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Abstract

We study optimal contracting between a firm selling a divisible good that exhibits

positive externality and a group of agents in a social network. The extent of external-

ity that each agent receives from the consumption of neighboring agents is privately

held and is unknown to the firm. By explicitly characterizing the optimal multilat-

eral contract, we demonstrate how inefficiency in an agent’s trade propagates through

the network and creates unequal and network-dependent downward distortion in

other agents’ trades. Furthermore, we describe bilateral contracts (non-linear pric-

ing schemes) and characterize their explicit dependence on the network structure.

We show that the firm will benefit from uncertainty in an agent’s valuation of other

agents’ externality. We describe the profit gap between multilateral and bilateral con-

tracts and analyze the consequences of the explicit dependence of the contracts on

network structure. When the network is balanced in terms of homogeneity of agents’

influence, network structure has no impact on the firm’s profit for bilateral contracts.

On the other hand, when the influences are heterogeneous with high dispersion (as

in core-periphery networks) the restriction to bilateral contracts can result in profit

losses that grow unbounded with the size of networks.
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1 Introduction

Over the past decade, there has been a flurry of research on economics of social networks

and the monetization of social data. From display advertising to viral marketing, firms

have been trying to use consumers’ social interactions to increase their sales revenue,

leading to exponential growth in revenue for online social networking platforms. While

most revenue generated from social media accrues through advertising, there has been

a major push to devise intelligent strategies for pricing products that exhibit network

effects. Information about goods and services often spreads in networks as “word of

mouth", while in other instances, the product itself has features that induces positive

network effects. Examples include Nike+, the technology that tracks data from every run

and connects runners around the world to online music services such as Apple Music and

Spotify. In all these examples, firms can utilize a positive externality to sell more goods

and services, since the choices of friends and acquaintances influence each consumer’s

decisions.

In many instances firms have data on the consumption of the products/services

they sell, as well as the social network activity of their consumers. For example, online

social-networking communities, such as Facebook, Twitter, Instagram, and Pinterest, al-

low firms to target users based on their social interactions. Some companies also provide

services to firms based on information on aggregate network effects obtained by quan-

titative analyses of consumers’ online behavior (e.g., Klout, Commun.it, Cloze.com and

Kred). Firms expend major effort to exploit underlying network effects and forces in

order to maximize profit. However, a major difficulty in using this information is the

uncertainty as to how much agents value the externalities. An externality’s value is often

the private information of the agents. As an example, an agent may become aware of

opinions or experiences of her friends about their usage of a specific good or service via

her social interactions, but how much she cares (i.e., the extent of her attention) about

their opinions is often her private information.

A monopoly firm selling a divisible good that demonstrates network effects natu-

rally faces the following questions: How should firms incorporate knowledge of their

customers’ underlying social-network structure into their selling strategies when infor-

mation on network effects is incomplete? Is uncertainty between agents about network

effects beneficial to the firm? Does explicit knowledge of the network structure always
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matter in firms’ profit-maximizing strategies?

To address these questions, we study optimal contracting (multilateral and bilateral)

between a firm and a network of agents (consumers) with two distinguishing features:

First, the positive externality that agents receive from their neighbors’ consumption is

captured by the underlying social structure that is often incomplete (i.e., not an all-to-all

graph), with different agents in the network have varying degrees of influence.1 Second,

and more importantly, the extent of network externality to each agent is privately held,

unknown to the firm and other agents. Our aim is to understand how network structure

affects optimal contracts and to investigate the nature of resulting distortions and ineffi-

ciencies in principal-agent(s) problems, when the above two features are both present.

The goal of this paper is to study optimal contracting in networks when there is

incomplete information about the strength of network effects. A major twist in our model,

and a point of departure from the existing literature, is that the impact of aggregate

network effect (externalities) to each agent is her private information which we interpret

as the agent’s type. A network’s structure and the uncertainty in the strength of network

effects are essential features of our analysis, and lead to the following implications.

1.1 Overview of the results

We start by explicitly specifying optimal multilateral contracts. Our first—rather intuitive—

result shows that because of the positive network externality effect, inefficiency in an

agent’s trade (consumption) propagates throughout the network, causing a downward

network-dependent distortion in other agents’ trades. Due to the connectivity in the sym-

metrized network,2 inefficiency in only one agent’s trade is sufficient to cause a downward

distortion in all agents’ trades—even the trades of efficient agents.3,4

1This heterogeneity of influence is important, as the extent of externality is often determined by the
influential agents in the network. These agents are key individuals whose consumption behavior has a
large impact on the consumption levels of others. Developing new methods and algorithms to identify
influential/key agents from big data sets has recently attracted a lot of attention, see Probst, Grosswiele
and Pfleger (2013) for a recent survey of this literature.

2The symmetrized network is defined as the sum of the network adjacency and its transpose. As we will
see later, since the influences are asymmetric, the network adjacency matrix is not (necessarily) a symmetric
matrix.

3Following Laffont and Martimort (2002), we call an agent efficient only when she reports the maximum
type.

4Furthermore, we show that the maximum distortion in the whole network is caused by influential
agents who are connected to other agents with high influence.
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Given the complexities associated with the implementing optimal multilateral con-

tracts and the difficulties associated with commitment and enforcement, we specify sim-

pler, yet suboptimal, bilateral contracts, where additional restrictions are added to con-

tract space to ensure that the maps are diagonal.5 We explicitly characterize optimal bi-

lateral contracts and study how uncertainty among consumers (agents) affects the firm’s

profit.

We show that the firm benefits from increasing uncertainty among consumers. The

intuition is as follows: There are two sources of uncertainty in the model. One uncer-

tainty is among the agents themselves and the other is between the firm and the agents.

The uncertainty among the firm and the agents results in the canonical adverse-selection

effect that manifests itself in the difference between the first-best and the second-best

solutions. However, impact of the uncertainty among the agents themselves is more pro-

found, and is captured by the structure of the first-best solution.6 Given this observation,

we show that higher uncertainty about an agent’s type increases the expected quantity

consumed by all agents, and thus, due to the strategic complement property, this effect

in turn increases the firm’s expected profit.7,8 Does network structure always affect firms’

profits? Surprisingly, when the agents’ centralities in the underlying network are similar,

the resulting bilateral contract is network-independent—network structure has no effect

on the firm’s profit. As a result, in balanced networks, explicit knowledge of network

structures has no benefit for the firm.9

Equipped with the explicit characterizations of bilateral and multilateral contracts,

we next consider how firms’ profits in these contracts, consumers’ social influences and

network characteristics are related to one another. Of course, a firm’s profit in any multi-

lateral contract upper-bounds the profit in the corresponding bilateral contract. But, how

is this gap related to network structures? To answer this important question, we study how

5In the literature, sometimes bilateral contracting problems are referred to as non-linear pricing.
6In the first-best solution there is no uncertainty between the firm and the agents, thus uncertainty in

the first-best solution arises from the uncertainty among the agents.
7Similar result holds in the multilateral contracts.
8Moreover, our explicit characterizations of the optimal contracts show that even a small shock to exter-

nality will cause a potentially large change in the first- and second-best allocations as well as in agents’
influences (as measured by their centralities) in the network. This structural difference particularly mani-
fests itself in the importance of second-hop information in the structure of the bilateral contracts.

9We further derive simple upper and lower bounds on the firm’s profit in terms of network spectral
properties. These bounds show that aggregate characteristics of networks such as the smallest and largest
eigenvalues, are enough to bound the profit.
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network structure affects a firm’s profit gap and profit ratio for multilateral and bilateral

contracts.

We establish that, independent of network structures, the profit gap monotonically

increases when extra links are added and networks become denser. This is intuitive be-

cause more links amplify strategic complementarity between agents, increasing the in-

fluence of network externality on each agent’s payoff, leading to an increase in the profit

gap.10 To better understand this network feature of the profit gap, we also find a graph-

theoretic upper bound on this profit gap that is increasing in the largest eigenvalue of

the underlying network. A lower bound is also provided, which is increasing in the max-

imum in-degree in the network. Together, these results provide the intuition that with

more concentration in networks (i.e., increasing maximum in-degree of networks) the

profit gap becomes larger.

For robustness, we further analyze the ratio of profits in multilateral and bilateral

contracts and show that for large balanced networks the ratio remains constant. This

intuitive result proves that in large economies with limited heterogeneity in in-degrees,

firms’ profits in multilateral and bilateral contracts are proportional to one another. In

contrast, however, we also provide a lower bound on this profit ratio in terms of the

Frobenius norm of the Bonacich centrality in the symmetrized network and relate it to

the extent of concentrations in networks. The main takeaway of this result is that in most

networks with the mean-preserving spread of centralities, as the standard deviation of

the centralities increases, the lower bound rises, increasing the profit ratio.

Finally, the above findings beg the following question: Can the profit gap grow un-

boundedly? By focusing on particular core-periphery network structures, we show that

the extent of asymmetry in agents’ in-degrees can have a major impact on the profit gap.

Specifically, for certain networks (core-periphery structures), the profit gap can grow un-

bounded as the network size increases. This result provides the following important

intuition: in large networks with large influence asymmetries (e.g., stark heterogeneity in

in-degrees), firms’ restrictions to bilateral contracts may result in major loss of profit.11

10We also show that, due to the uncertainty in network externalities, the optimality gap becomes directly
related to the centrality of nodes of an auxiliary network in which certain directed paths of length 2 have
become edges.

11Intuitively, the converse holds as well. That is, the profit gap can go to zero when externality weights
are getting sufficiently small as the network size grows.
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1.2 Related literature

The goal of this paper is to study optimal contracting in networks with incomplete in-

formation in the strength of interactions. A major twist in our model, and a point of

departure from the existing literature, is the uncertainty in the value of network effect,

which is each agent’s private information.

We consider a model with strategic complementarity where an increase in the trade

of others leads a given agent’s higher trade to have a relatively higher payoff compared

to the same agent’s lower trade. This effect has been the subject of extensive work (e.g.,

Farrell and Saloner (1985), Katz and Shapiro (1986)). However, in the existing litera-

ture, the network effects often correspond to all-to-all or to complete graphs, whereas in

our setup agents interact locally only with their neighbors according to the underlying

network structure.

Strategic interactions under the presence of local network effects have been analyzed

as network games by a series of papers in the past decade. These include Ballester, Calvo-

Armengol and Zenou (2006), Bramoullé and Kranton (2007), Candogan, Bimpikis and

Ozdaglar (2012), Bloch and Quérou (2013), Corbo, Calvo-Armengol and Parkes (2007),

Galeotti and Goyal (2009), Jackson and Zenou (2015), Fainmesser and Galeotti (2016a,b).

Following the common trend in this literature, we assume the payoff function of agents

takes the form of a quadratic function. In Ballester, Calvo-Armengol and Zenou (2006),

the authors explicitly characterize the Nash equilibrium of a network game when agents

choose their effort simultaneously. Furthermore, the authors show that the peer effect

game has a unique Nash equilibrium in which each agent’s effort is proportional to her

Bonacich centrality in the original network. Other authors such as Bramoullé and Kran-

ton (2007), Corbo, Calvo-Armengol and Parkes (2007), and Bramoullé, Kranton and D’Amours

(2014) study a similar game in the context of the provisioning of public goods. Candogan,

Bimpikis and Ozdaglar (2012) extend this framework to include optimal pricing when the

firm and the agents have perfect knowledge of the network structure. The authors show

that the optimal consumption of each consumer depends on the Bonacich centrality of

the network, and as a result the optimal pricing strategy may involve offering discounts

to agents who have a central position in the network and are a source of extra utility for

their neighbors, while others who receive this extra utility will receive a markup in the

price. Bloch and Quérou (2013) study a similar pricing setting and also model network ef-
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fects as a deterministic graph that is commonly known to the firm and agents. They show

that the value of location-based price discrimination depends on the extent of convexity

of the firm’s cost function. Other authors, such as Galeotti et al. (2010) and Sundararajan

(2008), consider the more realistic setting of firm’s limited knowledge about the orig-

inal social network’s structure such as knowledge of the degree distribution, and thus

derive optimal mechanisms that depend on this first-degree measure of influence of an

agent. Recently, Fainmesser and Galeotti (2016a) consider a setup similar to Galeotti et al.

(2010) and Sundararajan (2008), which utilizes the knowledge of the degree distribution

according to which consumers are aware of their own in-degree and out-degree, and are

uncertain about the level of interactions of others. The authors develop price discrimina-

tion strategies based on a firm’s information about consumers’ influence and consumers’

susceptibility to influence, evaluate the value of information on network effects for the

firm, and show that value of information about consumers’ influence and/or consumers’

susceptibility increases in the dispersion of the in- and out-degree distributions, as well

as the average level of network effects.12 In contrast to these works, we consider optimal

contracting with local externalities and incomplete information on the value of network

effects.13

Our work is also in line with the body of literature on optimal contracting in principal-

agent models by Mussa and Rosen (1978); Maskin and Riley (1984); Laffont and Tirole

(1990), and, in particular on devising optimal contracts with externalities by Segal (1999,

2003); Csorba (2008); Bernstein and Winter (2012).14 In particular, Segal (1999, 2003) in

his seminal papers develops a model of contracting with externalities under complete in-

12Fainmesser and Galeotti (2016b) study the practice of influencer marketing and its effect on market
efficiency in oligopoly markets. They show that firms subsidize (charge premia) consumers whose influence
is above (below) that of average influential consumers. The size of premia/discounts depend on the strength
of network effects and the level of information that firms have on consumers’ influence.

13Other network-related works include: Business cycles (Acemoglu et al. (2012)), learning (Golub and
Jackson (2010), Acemoglu et al. (2011), Golub and Jackson (2012)), advertising and targeted pricing
(Bimpikis, Ozdaglar and Yildiz (2016), Bloch (2016), Leduc, Jackson and Johari (2017), Shin (2017) Chen,
Zenou and Zhou (2018)), dynamic pricing (Ajorlou, Jadbabaie and Kakhbod (2018)), and network games
(Galeotti and Mattozzi (2011), Zhou and Chen (2015), Belhaj, Bervoets and Deroian (2016)).

14Bernstein and Winter (2012) setup is in complete information that studies how to subsidize in order
to obtain efficient coordination in a setting. Csorba (2008) extends Segal (1999, 2003) works to include
incomplete information and demonstrate that the joint presence of asymmetric information and positive
externality leads to a downward distortion in the welfare-maximizing allocation for all agents. Importantly,
the nature of externality in those works is such that the utility of an agent depends on the behavior of the
whole set of agents; however, in our setup agents interact locally only with their neighbors, and uncertainty
is in network effects.
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formation with an all-to-all (complete) network structure and characterizes the nature of

the arising distortions and inefficiencies. When externalities are positive, he shows that

each agent’s consumption level is smaller in the resulting equilibrium allocation than in

the socially efficient one. In contrast to these works, we consider optimal contracting in

the presence of a general network structure with incomplete information in the aggregate

network effect. We particularly consider how network structures affect multilateral and

bilateral contracts.

The rest of the paper is organized as follows: Section 2 presents the general model.

Section 3 characterizes the optimal multilateral contract and makes a linkage to the

Bonacich centrality measure. The optimal bilateral contract is specified in Section 4, and

the comparison between these contracts is in Section 5. Our conclusion closes the paper.

Proofs appear in the appendix.

2 Model: optimal (multilateral) contracts

A monopoly firm sells a divisible good that may be used by n consumer agents in varying

quantities. The firm’s marginal cost of production is normalized to zero. Agents in this

market form a social network denoted by G = (V ,E), where the vertex set V = {1, · · · ,n}
corresponds to the set of agents, and the edge set E ⊆ V 2 corresponds to social relation-

ships. The corresponding adjacency in the network is captured by a matrix denoted by

G (with a slight abuse of notation G denotes the network as well as the adjacency matrix

corresponding to it). The ij-th entry of G, denoted by gij , represents the strength of the

influence of a agent j on i. We assume gij ∈ [0 1] for all i, j and we set gii = 0 for all i. For

any i, j ∈ V , when gij > 0, agent j induces some positive externality on agent i. We fur-

ther assume the underlying undirected network, which is formed by ignoring orientation

of edges, is connected. The network G is common knowledge, i.e., all gij are commonly

known.

We further assume the payoff function of agents is quadratic. More specifically, each
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agent i’s payoff is specified as follows:

ui(θi ,xi ,x−i , ti) = axi −
b
2
x2
i︸     ︷︷     ︸

direct utility

+ θi
∑
j,i

gijxixj︸          ︷︷          ︸
indirect utility

(type-dependent network effect)

− ti︸︷︷︸
payment

, (1)

where xi is the amount of the good she consumes, x−i , (x1,x2, · · · ,xi−1,xi+1, · · · ,xn) is the

consumption of other agents excluding agent i, and ti is the disutility charged for xi by

the firm.

In addition, the parameter θi ∈ [θ θ̄] controls the (aggregate) strength of the net-

work effect for agent i. Each agent’s type θi is her private information (i.e., neither the

firm nor other agents know the type), but it is commonly known that θi is drawn inde-

pendently from a cumulative distribution F, for all i. We assume F is continuous and has

a full support, with continuous density f such that f (·) > 0. Moreover, φ(τ) , 1−F(τ)
f (τ) , the

reciprocal of the hazard rate, is assumed to be non-increasing for all τ .

We can interpret the payoff function of each agent i as follows. The first two terms

of (1) represent the direct utility agent i derives from her trade (consumption) xi , inde-

pendent of the trades of her neighbors. The third term represents the (type-dependent)

network-externality effect when agent i accepts the proposed offer. Since gij for all i and

j are known, this captures the situation where an agent may become aware of opinions or

experiences of her friends about their usage of a specific good or service via her social in-

teractions (which is the known gij in our formulation), but how much agent i values/cares

about the aggregate network effect due to her friends’ consumptions (which is formulated

as
∑
j,i gijxixj in our formulation) is her private information (which is captured by her

private type θi). Also, we note that gij and gji might differ from one another. When

gij > 0, trading of i and j with the firm has a strategic complement property. That is,

an increase in agent j’s consumption triggers an upward shift in agent i’s consumption.

Finally, the last term in (1) is agent i’s payment to the firm.

In this economy, the firm’s objective is to devise a menu of optimal incentive quantity-

price pairs {xi(·), ti(·)} for each agent i so as to maximize her total ex-ante profit defined
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as:

Eθ∈[θ θ̄]n

 n∑
i=1

ti(θ)

 . (2)

Notations Before proceeding further, we introduce some notation that will be used

throughout. We will occasionally write “−i” to mean agents other than agent i, and θ

to denote a type profile, i.e., θ ∈ [θ θ̄]n. If M is a square matrix, then MT denotes its

transpose. Unless indicated otherwise, a bold letter denotes a column vector (e.g. x), its

transpose is denoted by xT and the i′s-th element is denoted by [x]i . Finally, I denotes the

identity matrix.

3 Contracting game

The timing of the contracting game is as follows:

• Period 1: Each agent i observes her private type θi .

• Period 2: Firm announces to each agent i the menu of quantity-price pairs {xi(·), ti(·)}.

• Period 3: Each agent i based on her private type θi determines her optimal an-

nouncement type that is

θ̂i =arg max
τi∈[θ θ̄]

Eθ−i

[
ui(θi ,xi(τi ,θ−i),x−i(τi ,θ−i), ti(τi ,θ−i))

]
,

subject to her participation constraint

Eθ−i
[
ui(θi ,xi(θ̂i ,θ−i),x−i(θ̂i ,θ−i), ti(θ̂i ,θ−i))

]
≥ 0,

(we have assumed the reservation utility of each agent is normalized to zero).

• Period 4: The payoff of all agents and the firm are realized.

We assume each agent i, before making her decision, observes the menus offered

to all agents. This assumption essentially rules out a situation where the firm and one

agent trade secretly and eliminates the case where one agent’s trade is contingent on the
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trades of the others.15 Appealing to the Revelation Principle, in characterizing optimal

quantity-price pairs {xi(·), ti(·)}ni=1, the firm can focus on direct revelation mechanisms in

which the agents announce their types, and truthful reporting constitutes a Bayes-Nash

equilibrium.16 Thus, the firm’s problem is rewritten as:

max
{xi(·),ti(·)}ni=1

E

 n∑
i=1

ti(θ)


subject to (IC): θi =arg max

τi∈[θ θ̄]
Eθ−i [ui(θi ,xi(τi ,θ−i),x−i(τi ,θ−i), ti(τi ,θ−i))] ∀i, θi , (3)

(PC): Eθ−i [ui(θi ,xi(θi ,θ−i),x−i(θi ,θ−i), ti(θi ,θ−i))] ≥ 0 ∀i, θi , (4)

where equations (3) and (4) are the corresponding incentive-compatibility (IC) and par-

ticipation constraints (PC), respectively. As in standard adverse-selection problems, the

solution of the above program in the absence of IC constraints is called the first-best so-

lution, denoted by {xFBi (·), tFBi (·)}ni=1. And when IC constraints are present, the solution is

called the second-best solution and is denoted by {xSBi (·), tSBi (·)}ni=1.

3.1 First-best and second-best solutions

Since without the IC constraints in the firm’s problem, all PC constraints must bind, the

first-best trade profile {xFBi (·)}ni=1 is indeed (ex ante) total surplus maximizing:

{xFBi (·)}ni=1 ∈ arg max
{xi(·)}ni=1

E
n∑
i=1

axi − b2x2
i +θixi

∑
j,i

gijxj

 . (5)

{xFBi (·)}ni=1 serves as a benchmark. Any discrepancy between the second-best trade profile

{xSBi (·)}ni=1 and the benchmark solution, for each realization of θ, is called distortion, and

is the source of inefficiency. To ensure the objective function in Eq. (5) is indeed concave

and has an interior solution for each type profile θ ∈ [θ θ̄]n, we make the following as-

sumption. This condition stipulates that local complementarities must be small enough

compared to own concavity, which then prevents excessive feedback that can lead to the

absence of a finite trade profile.

15This is common in contracting literature, see Segal (1999, 2003).
16By the Revelation Principle, without loss of generality, a firm can restrict her search to design contract

profiles wherein each agent i always finds it optimal to report her type θi truthfully.
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Assumption 1. For each i ∈ V , b > θ̄
∑
j,i(gij + gji).

Before characterizing the second-best solution we have the following assumption, to

ensure xSBi (θ) is an interior solution17 to the firm’s problem, for all i ∈ V and θ ∈ [θ θ̄]n.

Assumption 2. ψ(θ) , θ − 1−F(θ)
f (θ) ≥ 0.18

The term ψ(θi) is usually referred as a virtual type. The next proposition character-

izes the first-best and the second-best trade profiles in terms of network structure.

Proposition 1. For any type profile θ ∈ [θ θ̄]n:

(i) the first-best trade profile is given by

xFB(θ) = a [bI− (MθG+GTMθ)]−11, (6)

where Mθ , diag(θ1,θ2, · · · ,θn).

(ii) the second-best trade profile is given by

xSB(θ) = a [bI− (MψG+GTMψ)]−11, (7)

where Mψ , diag(ψ(θ1),ψ(θ2), · · · ,ψ(θn)).

Proof. See the Appendix.

The consequences of this explicit characterization of the first-best and the second-

best trade profiles in terms of the underlying network structure are analyzed in the fol-

lowing sections.

17 Without Assumption 2 we may need to do bunching.
18 As an example, one can easily show that the following class of (β−parametric) cumulative distribution

Fβ(τ) = 1−
(
θ̄ − τ
θ̄ −θ

) 1
β

, β > 0, τ ∈ [θ θ̄],

has an increasing hazard rate and, in addition, for any β ≤ θ
θ̄−θ , Assumption 2 is satisfied.
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3.2 Distortion vs. network structure: Role of influential agents

Given the result in Proposition 1, we now introduce a distortion vector as a function of the

underlying network structure. By characterizing the distortion in terms of Bonacich cen-

trality of agents, we determine how inefficiency in one agent’s trade propagates through-

out the network. We further show that the impact of this distortion propagation on the

firm’s profit varies depending on the agents’ locations in the network, and thus we iden-

tify influential agents whose inefficiencies result in maximum losses in the firm’s profit.

Let us first provide the definitions of Bonacich centrality and the distortion vector,

for any type profile θ ∈ [θ θ̄]n.

Definition 1 (Bonacich centrality). Given a network with adjacency matrix G, a scalar α,

and a vector v (weighted) Bonacich centrality with parameter α is defined by19

K(G,α,v) = (I−αG)−1v = [k1 k2 · · ·kn]T ,

and ki denotes agent i’s Bonacich centrality.

Definition 2. For any θ ∈ [θ θ̄]n, the difference between the first-best and second-best is

referred to as distortion and is denoted by d(θ) as follows:

d(θ) , xFB(θ)− xSB(θ). (8)

Next, using the result in Proposition 1 for the first-best and second-best trade pro-

files and the above definitions, the distortion vector is characterized by the following

Lemma.

Lemma 1. For any type profile θ ∈ [θ θ̄]n:

(i) d(θ) = K
(
MθG+GTMθ,

1
b ,
a
b1

)
−K

(
MψG+GTMψ,

1
b ,
a
b1

)
.

(ii) Distortion is downward, i.e., d(θ) ≥ 0.

(iii) Let [d(θ)]i denote the distortion in agent i’s trade with regard to the type profile θ. Then:

[d(θ)]i > 0

19It is assumed that (I−αG)−1 is well defined and nonnegative.
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if there exists at least one agent j whose θj , θ̄.

Proof. See the Appendix.

We summarize the key insights of the above lemma as follows. First, because of the

positive network externality in the payoff functions (see (1)), distortion is always down-

ward (i.e. d(θ) ≥ 0). Second, because of connectivity (i.e., existence of a path between

any pair of agents in the symmetrized network G + GT ), inefficiency in only one agent’s

trade is sufficient to distort other agents’ allocations downward. In other words, posi-

tive network externality, together with connectivity, implies that distortion in one agent’s

trade propagates throughout the network and distorts even the trade of an efficient agent

whose type is the highest type θ̄ downward. Moreover, given the explicit characterization

in part (i), the way a distortion in one agent’s trade propagates throughout the network

depends on her position in the symmetrized network, as captured by the node’s Bonacich

centrality.20 This observation immediately gives rise to the following question: Are cen-

tral agents (in terms of Bonacich centrality) in G+GT necessarily those key agents whose

distortions have the highest effect on the firm’s profit? By key agents, we naturally mean

those agents whose inefficiencies create maximum distortion throughout the whole net-

work. We show that this is not necessarily the case. To proceed, we first provide the

definition of total distortion in a network for any type profile θ. The total distortion is

directly related to the firm’s total loss caused by propagations of distortions due to inef-

ficiencies in agents’ trades. Thus, we also specify agents whose private information (and

the firm’s lack of access to it) can result in the largest loss to the firm’s profit.

Definition 3. For any type profile θ ∈ [θ θ̄]n, the total distortion is the sum of the discrepancies

in the first- and the second-best allocations of all agents, given by:

T (θ) = 1Td(θ).

To show that central agents in G + GT are not necessarily key agents, we use the

explicit characterization of the distortion vector in Lemma 1 and determine the overall

distortion as well as the loss that inefficiency of any agent’s type can create, when others

are all at the efficient type (i.e., θj = θ̄ for all j , i).21

20To visualize better the way distortion propagates in a network, see Example B-1 in Appendix B.
21The assumption that all except one agent is efficient is for the purpose of obtaining a meaningful
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Proposition 2. Consider any agent i ∈ {1, · · · ,n} and let θj = θ̄, for all j , i. Let kr denote

agent r’s Bonacich centrality as characterized by (I− θ̄b (G+GT ))−11 = [k1, k2, · · · , kn]. Then, the

following holds when ∆θ = θ̄ −θ is sufficiently small:

(i) When θi ≤ θ̄, the overall distortion created by agent i in any network G is given by:

Ti(θi , θ̄−i) =
2a
b2 |φ

′(θ̄)| (θ̄ −θi)
 n∑
j=1

kikjgij

. (9)

(ii) Let θi ∈ {θ, θ̄} with Prob{θi = θ} = v > ∆θ
θ̄

. Then, the lack of the firm’s certain knowledge

(incomplete information) about agent i’s type maximizes expected loss in the firm’s profit

when i ∈ V ? where

V ? , arg max
i∈{1,2,··· ,n}

E

ΠFB(θi , θ̄−i)−ΠSB(θi , θ̄−i)︸                            ︷︷                            ︸
loss

 = arg max
i∈{1,2,··· ,n}

n∑
j=1

kikjgij , (10)

where ΠFB and ΠSB denote the firm’s profit due to the corresponding first-best and

second-best contracts, respectively.

Proof. See the Appendix.

The above proposition provides three results that are worth highlighting. First, the

overall distortion created by agent i decreases in her type. This is intuitive because dis-

tortions created by agent i decrease as agent i becomes more efficient. The second point

concerns identifying key agents whose inefficiencies create the maximum distortion in

the entire network. According to Eq. (9), the maximum distortion in the whole network

is due to an agent for whom the product of her and her neighbor’s centralities are maxi-

mized in the symmetrized network. Finally, the maximum loss to the firm’s profit occurs

when the firm does not have access to the key agents’ types.

Therefore, in order to identify the key agents in G, not only each agent i’s centrality in

G+GT (i.e. ki) but also her neighbors’ centralities (i.e., kj through gij) have to be taken into

account. As a consequence, the notion of a key agent in our model is different from other

normalization. This simplifies the comparisons and serves as a simple benchmark to achieve our goal of
showing that central agents in G+GT are not necessarily key agents.
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models with the linear-quadratic payoff functions (e.g., most notably Ballester, Calvo-

Armengol and Zenou (2006), Candogan, Bimpikis and Ozdaglar (2012) and Bloch and

Quérou (2013)). In these important works, key agents are directly central agents in either

the underlying network G or the symmetrized network G+GT . This structural difference

that arises in our model is mainly due to the nature of uncertainty, which is placed within

the network externality effect. In Appendix G we show that if uncertainty is situated in

the direct utility, then maximum distortion becomes due to agents that are central in the

symmetrized network G+GT , following the previous works in the literature.

We highlight the impact of this observation in the next example, where we show

that centrality of an agent in the symmetrized network G+GT is insufficient for the agent

to be a key agent as far as trade is concerned.

Example 1 (Two-star Network.). Consider the following Two-star network, gij ∈ {0,κ}, for22

all i, j, capturing the interconnection among the agents. Agent 1 obtains externality from agent

2, but not vice versa. In this network, agents 1 and 2 are both equally central in G + GT , i.e.,

k1 = k2. In addition, the peripheral nodes all have the same centralities, lower than the central

nodes, i.e., kj = ki < k1 = k2, for all i, j ∈ {3,4, · · · ,2d + 2}. Let Λ(θi) ,
(
2φ′(θ̄)(θi − θ̄)

)
, for

all θi ∈ [θ θ̄]. Using Proposition 2, we show that although agents 1 and 2 both have the same

centralities, inefficiency in agent 1’s report creates more distortion (in the whole network) than

does agent 2’s. To see this, let θ1 = θ2 = γ ∈ [θ θ̄], then:

T1(γ, θ̄−1)−T2(γ, θ̄−2) =
(
κΛ(γ)

)
k1k2 =

(
κΛ(γ)

)
︸   ︷︷   ︸

>0

(k1)2 > 0,

where (γ, θ̄−2) , (θ̄,γ, θ̄, · · · , θ̄) and (γ, θ̄−1) , (γ, θ̄, θ̄, · · · , θ̄). Notice that this discrepancy

is strictly increasing in κ and k1, resulting in a potentially drastic difference by increasing κ

and/or k1.

4 Bilateral contracts

So far, we have analyzed the optimal multilateral contracts in the presence of network

externalities. In this section, we consider a situation where the firm is forced to offer

22κ > 0 is small enough so that (I− θ̄(G+GT ))−1 is well-defined. Note also that a = b = 1.
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Figure 1: Two-star network. Agents 1 and 2 are both equally central in G + GT . But
distortion created in the whole network due to inefficiency in agent 1’s type is strictly
greater than agent 2’s.

“bilateral contracts” (which can essentially be interpreted as cases of nonlinear pricing).

Although a bilateral contract is not profit-maximizing,23 it is practically simpler to im-

plement.24

In bilateral contracts, the firm’s objective is to devise a menu of optimal incentive

quantity-price pairs {xi(θi), ti(θi)} for each agent i, where θi ∈ [θ θ̄], so as to maximize her

total ex-ante profit defined as:
∑n
i=1 E [ti(θi)] . In contrast to multilateral contracts, each

agent i’s menu is only a function of her (reported) type and not the type profile. Using the

Revelation Principle, the firm’s problem can be recast as follows:

max
{xi(·),ti(·)}ni=1

n∑
i=1

E [ti(θi)]

subject to (IC): θi =arg max
τi∈[θ θ̄]

ui(θi ,xi(τi), ti(τi)) ∀i, θi , (11)

(PC): ui(θi ,xi(θi), ti(θi)) ≥ 0 ∀i, θi , (12)

where Eq. (11) and Eq. (12) are the corresponding incentive-compatibility and partic-

ipation constraints, respectively. Moreover, the payoff function of each agent i is now

23It is not profit maximizing, since these contracts are less constrained and there exists inefficiency even
at the highest type profile.

24In the next section, we compare multilateral and bilateral contracts in terms of network structure.
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updated as:

ui(θi ,xi , ti) = axi −
b
2
x2
i︸     ︷︷     ︸

direct utility

+ θixi
∑
j,i

gij E[xj(θj)]︸                   ︷︷                   ︸
type-dependent indirect utility

− ti︸︷︷︸
payment

.

We preface our characterization of optimal bilateral contracts with the following

remarks.

Remark 1. Multilateral and bilateral contracts can be different, not only in the magnitude of

allocations, but also in the induced order of allocations. While having a different allocation

is natural, we note that certain network structures might also induce a different rank order on

the amount of allocations (see Example B-3 in Appendix B and the formal result in Appendix

F).

Remark 2. We note that similar to multilateral contracts, analyzing the effect of uncertainty in

the full information case (the first-best) and in the imperfect-information case (the second-best)

are essentially the same task. In the second-best the uncertainty is of the virtual type ψ(θ),

whereas in the first-best the uncertainty is of the type θ. We analyze the impact of uncertainty

on the firm’s profit in Appendix D.

Remark 3. There is no difference (structurally) between the first- and the second-best solutions

(primarily, from the network point of view). That is, the structure of the second-best is actually

identical to that of the first-best, only θ changes toψ(θ)— which is due to the canonical adverse-

selection effect. Consequently, the results in the imperfect-information (the second-best) case

are actually the same as the results in the full-information (the first-best) case, with the minor

yet important difference that uncertainty in θ (in the first-best) is replaced with the uncertainty

in ψ(θ) (in the second-best). As a result, in what follows, for ease of exposition we present the

results in terms of first-best solution. The corresponding second-best results with the minor

change are considered in Appendix E.

We begin with the following technical assumption. This assumption ensures that

matrices that appear in the following proposition are indeed invertible and, thus, the

corresponding allocations are interior and bounded solutions.25

25Another meaningful (but more conservative) presentation of this assumption is given by Lemma 1 in
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Assumption 3. Let ρ(A) denote the spectral radius of A.26 Then

max{ρ

1
b

µψ(G+GT ) +
σ2
ψ

b
GTG


 ,ρ (1

b

[
µ(G+GT ) +

σ2

b
GTG

])
} < 1,

where

µ , E[θi], σ2 , Var(θi), µψ , E[ψ(θi)], σ2
ψ , Var(ψ(θi)).

The next proposition characterizes the optimal trade profile in terms of network

structures.

Proposition 3. For any i and θi , the optimal first trade profile is given by

xFBi (θi) =
a
b

(θi −µ)[GK1]i + a[K1]i (13)

where K ,
[
bI−µ(G+GT )− σ2

b G
TG

]−1
.27

Proof. See the Appendix.

Given the above characterization, the optimal trade profile explicitly depends on

the types, network structure, and the mean and variance of types. The uncertainty (i.e.,

the variance of the agents’ types) affects the optimal trade profile through the matrix K.

We emphasize that matrix K has an important role in the characterization of the optimal

trade profiles in terms of the agents’ locations in the underlying network.

the Appendix. Assumption 3 is ensured if

µτ

 n∑
j=1

gij +
n∑
j=1

gji

+
σ2
τ

b

n∑
j=1

n∑
k=1

gkj = µτ (di(in) + di(out)) +
σ2
τ

b

n∑
i=1

di(in) < b,

for any i, where di(in) is the in-degree and di(out) is the out-degree of agent i, and τ stands for the corre-
sponding ψ and θ (the mean and variance).

26Let {λ1, · · · ,λn} be the eigenvalues of a matrix A ∈ Rn×n. Then its spectral radius ρ(A) is defined as:
ρ(A) = max {|λ1|, . . . , |λn|}.

27The optimal second-best trade profile is given by

xSB(θi) =
a
b

(ψ(θi)−µψ)[GKψ1]i + a[Kψ1]i (14)

where Kψ ,

[
bI−µψ(G+GT )−

σ2
ψ

b GTG

]−1

.
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It is also worth noting that when [θ θ̄] shrinks to a single value θ, the allocation in

our model becomes x(θ) = a[bI−θ(G+GT )]−11,which is, expectedly, the same allocation as

in Candogan, Bimpikis and Ozdaglar (2012) and Bloch and Quérou (2013).28 Thus, the

interesting point that the above characterization shows is that even a small uncertainty

in θ (captured by σ2) will lead to a substantial change in the structure of the allocation.29

Finally, given the explicit characterizations in Proposition 3, the following proposi-

tion shows that increasing uncertainty in an agent’s type increases expected consumption

in all agents. The intuition is simple. Increasing uncertainty in an agent’s type increases

the expected consumption of the agent.30 Moreover, G+GT is a connected network. Thus,

due to the strategic complementarity in consumptions, an increase in the expected con-

sumption of the agent leads to an increase in the expected consumptions of other agents.

Proposition 4. Given an agent i, we can state the following:

(i) The expected first-best consumption of agent i is given by E[xFBi (θ̃i)] = a [K1]i .

(ii) Increasing uncertainty in agent j’s type increases the expected consumption of everyone

(i.e., ∂E[xFBi (θ̃i )]
∂σ2

j
≥ 0).31

Proof. See the Appendix.

4.1 Firm’s profit

In this section we consider the firm’s profit in bilateral contracts and its relation to net-

work structures, and provide simple upper and lower bounds on the firm’s profit in terms

of the network’s spectral properties.

Proposition 5. The first-best firm’s (expected) profit is given by Πbi.
G = a2

2 1TK1.32

28We note that marginal cost of production in our model is, without loss of generality, normalized to
zero.

29We further note that in Candogan, Bimpikis and Ozdaglar (2012) and Bloch and Quérou (2013) the
authors consider linear pricing. We, however, in bilateral contracts, consider non-linear pricing.

30This is due to the nature of K ∝
∑
k=0(µ(G+GT )+ σ2

b GTG)k and the linear-quadratic feature of the payoffs.
31Respectively, E[xSBi (θ̃i)] = a

[
Kψ1

]
i
. Also, a similar result holds under the second-best contract, by

considering increasing uncertainty in corresponding virtual types.
32Consequently, using Definition 1, the firm’s optimal expected profit is also given by Πbi.

G =
a
2

wwwwwwK (
µ(G+GT ) + σ2

b GTG, 1
b ,
a
b1

)wwwwww1
, where ‖ · ‖1 denotes the L1-norm. That is, ‖x‖ =

∑
i |xi |, the L1-norm

is simply the sum of the absolute values. The distance derived from this norm is known as the Manhattan
distance or L1 distance.
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Proof. See the Appendix.

Proposition 5 characterizes the firm’s optimal profit with respect to network struc-

tures. Importantly, Proposition 5 shows that in the presence of uncertainty in the extent

of externality certain paths of length two, due to the appearance of GTG in the matrix K (see

Proposition 3), become important. The following example highlights this observation.

Example 2. Consider an economy that consists of a firm and 5 consumer agents.33,34 Let the

interconnection among the agents be captured by a class of networks denoted by Gτ , τ ∈ [0 1].

Let Gτ = τG1 +(1−τ)G0, ∀τ ∈ [0 1], where G0 and G1 denote the star-outward and star-inward

networks, respectively (see Fig. 2). Thus, G0{ G1 when τ varies from 0 to 1.35

Given Proposition 5, to derive the firm’s optimal profit one needs to consider, for any

τ ∈ [0 1]

µψ(Gτ +GTτ ) +
σ2
ψ

b
GTτ Gτ |b=1,µψ=1,σ2

ψ= 1
3

= Gτ +GTτ +
1
3
GTτ Gτ

= G0 +G1︸  ︷︷  ︸
fixed for all τ

+
1
3
GTτ Gτ , (15)

where the last equality follows by the construction of Gτ . Observing this structure allows us to

disentangle the effect of the second-hop neighbor’s information via the GTG term. The impact

on the firm’s profit of changing τ from 0 to 1 is pictorially depicted in Fig. 2. As numerically

shown in this figure, among all star networks, characterized by Gτ , star-inward, i.e. G1, results

in the highest (ex-ante) profit. This is due to the fact that the second-hop neighbors have the

most impact when τ = 1.

We wrap up this section with the following proposition which characterizes quan-

titative upper and lower bounds on the firm’s bilateral profit in terms of the network’s

33In this example we consider the firm’s second-best profit. As noted before, the second- and the first-
best results are structurally similar. That is, a similar result as in Proposition 5 holds in the second-best,

i.e., Πbi.,SB
G = a2

2 1T Kψ1 and also Πbi.,SB
G = a

2

wwwwwwK (
G +GT , 1

b ,
a
b1

)wwwwww1
, where G , µψG+

σ2
ψ

2bG
TG and ‖ · ‖1 denotes

the L1-norm.
34Number of agents is set to 5 just for ease of illustration.
35Parameters: Focusing on the network structure, we assume each agent’s type is either low or high, i.e.,

θi ∈ {θ = 1, θ̄ = 2}, with probability Prob{θi = 1} = 1 − Prob{θi = 2} = v = 3
4 , for all i. Thus, µψ = θ = 1 and

σ2
ψ =

(
1−v
v

)
(∆θ)2|v= 3

4
= 1

3 . In addition, b = 1, a = 10 and gij ∈ {0,0.1}, for all i, j.
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Figure 2: Interconnection among the agents.

spectral properties. More specifically, we discuss these bounds in terms of the maximum

and minimum eigenvalues of the original symmetrized network.

In the following proposition, for clarity and ease of exposition we normalize b to 1.

Proposition 6. Consider an n−agent economy with the symmetric36 network structure G. Let

λmin and λmax be the smallest and largest eigenvalues37 corresponding to G. Then for small σ2:

na2

2
f (λmin) ≤Πbi.

G ≤
na2

2
f (λmax),

where f (λ) = 1−2µλ+σ2λ2

(1−2µλ)2 is increasing and convex in λ and increasing in σ2.38

Proof. See the Appendix.

The above result shows that aggregate characteristics of networks, such as minimum

and maximum eigenvalues, are enough to bound the profit. There is a close connection

between λmax and the average and maximum degrees dave and dmax. Specifically, one

can show that dave ≤ λmax ≤ dmax (followed by Prop. 2.1 in Lovász (2007) ). We use

this inequality to better illustrate the bounds. As shown in Proposition 6, the provided

bounds are increasing and convex in λ. In particular, as the average and maximum de-

grees drop, the upper bound also falls, decreasing profit. Networks with low dmax include

path-like networks, and networks with large diameters and low dmax. While λmax relates

to maximum and average degrees, λmin is a measure of how close the network is to being

36Symmetric means GT = G.
37Note that since G is loop-less (i.e. gii = 0, for all i), thus

∑
i λi = 0, implying that λmin ≤ 0 ≤ λmax.

38Similar result holds for the second-best contract.
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bipartite. We note that λmin is always negative, and in bipartite networks |λmin| = λmax

(followed by Prop. 2.3 in Lovász (2007)). Finally, via fixing µ, with increasing σ2 (i.e.,

higher uncertainty in an agent’s private type), the proposed lower and upper bounds

both increase, which suggests that higher uncertainty in an agent’s type benefits the firm.

This property is consistent with our formal result that the firm’s profit is increasing in σ2,

i.e., ∂Π
bi.
G

∂σ2 > 0 (impact of uncertainty on a firm’s profit is formally discussed in Appendix

D).

5 Multilateral vs. bilateral contracts in networks

We now explore differences in the firm’s profits between multilateral and bilateral con-

tracts in the presence of network externality and uncertainty. In particular, we wish to

address the following network-dependent questions: How and when does network struc-

ture matter? How does network structure affect the difference in the firm’s profit under

these various contracts? Is it possible for this difference to grow unboundedly or even go

to zero? And finally, how does network structure affect the ratio of the profits? In what

follows, for ease of exposition we assume, without loss of generality, that the curvature

term of the utility of each agent is normalized to 1 (i.e., b = 1).

5.1 Balanced networks and bilateral contracts

It turns out that when the in- (or out-) degree of the symmetrized network is the same

constant across agents, the network’s structure has no impact on the firm’s profit in the

case of a bilateral contract. This means that explicit knowledge of the network struc-

ture (beyond the knowledge of uniformity of centralities) is of no value to the firm. To

highlight this observation, we next define balanced networks to be those networks whose

symmetrized graph is degree-regular.

Definition 4. An economy with the network structure G is balanced if the symmetrized net-

work G+GT has constant row sums, i.e., there exists a τ > 0 such that39 ∑
j(gij + gji) = τ , for

all i.40

39Note that τ is small enough so that all matrices remain invertible.
40We note that the term “balanced graphs" in graph theory has a slightly different meaning than the one

we use here: in graph theory, a directed graph is called balanced if the in-degree and out-degree of each
node is the same. Here, on the other hand, we refer to the graph as balanced if the symmetrized network is
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Intuitively, balanced economies are those in which no agent is overtly more influen-

tial in terms of exertion of externality.

Proposition 7. Consider an n-agent economy with balanced structure G. Then, when σ2 is

small, the firm’s profit using bilateral contract is given byΠbi.
G = a2

2

[
nζ + σ2ζ2∑n

i=1

(∑n
j=1 gij

)2
]
,

where ζ = 1
1−µτ .41

Proof. See the Appendix.

The above proposition implies that when a firm makes use of bilateral contracts,

the profit in any balanced network is only a function of the number of agents and the

common degree of the symmetrized network (which is the row sum of the symmetrized

network matrix). When the number of agents is fixed, all networks corresponding to

the same τ result in the same (expected) profit. Consequently, explicit knowledge of the

network structure beyond the common degree is of no value to the firm. This result is

particularly useful in practice, it says that when uncertainty among the agents is small

and the firm makes use of bilateral contracts (i.e., non-linear pricing), then the firm’s

profit does not depend on the details of the network structure. This, however, may not

be the case under multilateral contracts (see Fig. 3). The following corollary summarizes

the above-discussed result.

Corollary 1. All balanced networks in which each agent has an equal in-degree (e.g. cycle,

wheel, regular networks) result in the same (expected) profit as when the firm uses bilateral

contracts.

5.2 Difference in firm’s profit (Profit gap):

Bilateral vs. multilateral contracts

We now explore the difference in a firm’s profits under multilateral and bilateral contracts

as a function of network structure. In particular, the following lemma provides a closed-

form expression that characterizes the suboptimality gap.

degree-regular graph. This means that the sum of in- and out-degrees is the same constant for all nodes in
the network.

41A similar result holds for the second-best contract, when θ is replaced with ψ(θ).
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Figure 3: All of these networks with bilateral contracts result in the same profit; however,
for multilateral contracts they may behave differently.

Lemma 2 (Profit gap). Suppose there exists an m̂ > 0, such that E[(θi − µ)k] < (m̂σ )k, for

all i and42 k ≥ 3. For any network G and for small σ2, let S , (I − µ(G + GT )), and K ,

(I−µ(G+GT ))−11 = S−11 be the centrality of the symmetrized graph, and define Ri , EiG+GTEi ,

where Ei is the matrix with only the ith diagonal set as 1 and other entries as zero, then43,44

Πmulti.
G −Πbi.

G =
(
a2

2
σ2

)
KT

 n∑
i=1

Ri(S
−1 − I)Ri + diag[(G ◦G)1]

K. (16)

Proof. See the Appendix.

With the lemma above, we can now characterize the suboptimality of bilateral con-

tracts. Some results are immediate. First, it is immediate45 that Πmulti.
G ≥ Πbi.

G and also

the gap increases with the extent of uncertainty, i.e., ∂{Π
multi.
G −Πbi.

G }
∂σ2 > 0. Second, this profit

gap is directly related to the Bonacich centrality of the symmetrized network.

Using Lemma 2, the following proposition characterizes several comparative statics

of the profit gap in terms of network structure and its spectral properties.

Proposition 8 (Profit gap and network properties). Consider an n-agent economy with the

42One can easily show this constraint is satisfied by many distributions like uniform and power distribu-
tions, for appropriately chosen parameters.

43 The notation ◦ denotes the element-wise Hadamard product. Given matrices A = (aij ) and C = (cij ) of
order n×n, A ◦C = (aijcij )ij , where aijcij is a scalar and A ◦C is of order n×n.

44A similar result holds in the second-best contract with θ replaced by ψ(θ).
45Notice that since S−1 is well defined and positive, S−1 − I =

∑
i≥1(µ(G+GT ))k is a positive matrix.
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interaction matrix G.46

(i) Suppose there is no link (externality) from j to i in G, and let G + {gij} denote the new

matrix induced by introducing the link {ij}. Assuming all the invertibility assumptions

are preserved, then Πmulti.
G −Πbi.

G <Πmulti.
G+{gij }

−Πbi.
G+{gij }

.

(ii) If 0 < α < 1, then Πmulti.
αG −Πbi.

αG < α
2
(
Πmulti.

G −Πbi.
G

)
.

(iii) Let G be symmetric47 and λmax denote the largest eigenvalue of G. Then

0 ≤Πmulti.
G −Πbi.

G ≤
(
na2

2
σ2

)
h(λmax),

where h(λ) , λ2 3+2µλ
(1−2µλ)3 that is increasing and convex in λ.

(iv) Let gij ∈ {0, g}, for all i, j. Then48:

Πmulti.
G −Πbi.

G ≥
a2

2
σ2µ2

(
d3
max g

4
)
,

where dmax denotes the maximum in-degree in G.

Proof. See the Appendix.

Intuitively, independent of network structures, the profit gap monotonically in-

creases when extra links are added and networks become denser. This is because more

links amplify strategic complementarity between agents, increasing the influence of net-

work externality on each agent’s payoff and leading to an increase in the profit gap. Sim-

ilarly, the profit gap deceases with lower weights gij . In this regard, Part (ii) shows that

the influence of weight reduction on the profit gap is at least quadratic. Parts (iii) and

(iv) provide quantitative upper and lower bounds on the profit gap in terms of the net-

work’s spectral properties. The upper bound is increasing in maximum eigenvalues of

underlying networks. Therefore, when the underlying network structure becomes more

dispersed (e.g., path-like networks), the proposed upper bound in most networks falls,

46The following results hold under the second-best contract with θ replaced by ψ(θ).
47Symmetric means GT = G.
48Note that g is potentially a function of n and is small enough to preserve all the invertibility assump-

tions.

26



decreasing the profit gap. Part (iv) provides a lower bound in terms of the mean and vari-

ance of the types and maximum in-degrees of underlying networks. This result implies

that with greater concentration in networks (i.e., increasing maximum in-degree of net-

works) the proposed lower bound increases, suggesting that the profit gap can be large in

dense networks.

Can the profit gap explode or vanish? In the following example, we establish that when

networks are heterogeneous with high dispersion (as in core-periphery networks), the re-

striction to bilateral contracts can result in profit losses that grow unboundedly with the

size of the networks. The converse holds as well. That is, expectedly, when the influ-

encing weights (i.e., gi,j) become proportionally small with the size of the networks, the

profit gap converges to zero. All of these statements are formally proved in Appendix C.

Example 3. Let us start with a formal definition of star-family networks:

Definition 5 (Star-family.). Let G0(n) and G1(n) denote, respectively, star-outward and star-

inward graphs over n nodes. The star family G includes all the δ-convex combinations of the

two-star structures defined as G(n) = {Gδ(n) : ∃ δ ∈ [0,1] s.t. Gδ(n) = δG1(n)+(1−δ)G0(n)}.49

The following figure depicts the profit gap due to the use of bilateral contracts in star

networks with 50, 100 and 150 nodes.50 The two extremes are star outward, δ = 0, and star

inward, δ = 1, respectively, and the rest are the convex combinations of the two extremes.

As the following figure shows, maximum loss (within the star-family) occurs in star-inwards,

which is formally shown in Appendix C.51 Moreover, the figure highlights the fact that with

an increasing number of agents, the profit gap may explode. This statement, of course, is not

49Notice that the star-family of networks is centrality-preserving (i.e., K = (I − µ(G+GT ))−11 is the same
for all the networks within the core-periphery (star) family). This is because all the networks in G(n) have
the same symmetrized adjacency (i.e., Gδ(n) +Gδ(n) = Gδ′ (n) +Gδ′ (n) for all δ,δ′ ∈ [0,1]).

50Other parameters: b =
√
n, µ = 1/2, σ2 = 1/12, and a2/2 = 1.

51It is worth noting that the main driver of this result is the second term of Eq. (16) in Lemma 2. Clearly,
in the class of core-periphery structures, the maximum centrality is in the core node, which we denote it by
k1, and thus by the symmetry in the periphery nodes in S−11 = [k1 k2 · · · kn]T , we must have k1 > k2 = · · · =
kn. Next, considering the second term of Eq. (16) (in Lemma 2), the Hadamard product G ◦G implies that

KT diag[(G ◦G)1]K =
n∑
i=1

k2
i ‖ degin(i) ‖22 = 1T S−1diag

 n∑
j=1

g2
1j ,

n∑
j=1

g2
2j , · · · ,

n∑
j=1

g2
nj

S−11.

Thus, due to k1 > k2 = · · · = kn, this term is maximized for star-inward, because
∑n
j=1 g

2
1j is maximized in

star-inward.
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always true and depends on network structure. In Appendix C, we show that the explosion

in the profit gap can occur in networks that have major asymmetry in their in-degrees. When

there is an agent dominant in her in-degree (e.g., star-inward) then the loss in the firm’s profit

due to the simpler bilateral contracts may become unbounded, and, thus, the firm’s restriction

to the simpler bilateral contracts may result in major losses in the firm’s profit.
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Figure 4: The plot visualizes the losses from using bilateral contracts for the family of
centrality-preserving star networks. The highest profit loss happens in star (in)ward,
when δ = 1. Moreover, as the number of agents, i.e. n, increases, the amount of loss
monotonically increases.

5.3 Profit ratio

To provide robust intuition about the impact of network structure on bilateral and multi-

lateral contracts, in this subsection we briefly consider how heterogeneity of influence in

networks affects the ratio of the bilateral and multilateral profits. We first consider large

balanced structures and then find upper and lower bounds on the profit ratio in general

networks in terms of various spectral properties of networks.
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Proposition 9. Consider the sequence of balanced networks {G(n)}∞n=2 with the same in-degree

at each node52. As n grows:

lim
n→∞

Πmulti.
G(n)

Πbi.
G(n)

=O(1).

Proof. See the Appendix.

The above intuitive result demonstrates that in large networks with homogeneous

degree of influences (i.e., balanced structures, as defined in Definition 4) the firm’s profits

in bilateral and multilateral contracts are of the same order (meaning that their ratio is of

order 1). Hence, in large economies with limited heterogeneity in in-degrees these contracts

are (in terms of profit) proportional to one another.53 We next consider how heterogeneity

of influence in networks affects the profit ratio.

Profit ratio: upper and lower bounds. The following propositions characterize upper

and lower bounds on the ratio of the firm’s profits under multilateral and bilateral con-

tracts. These bounds are in terms of the graph-spectral properties.

Proposition 10 (Upper bound). Consider an n− agent economy with the network structure

G. Let λmax denote the maximum eigenvalue of the symmetrized network G+GT . Then

Πmulti.
G

Πbi.
G

≤ 1 + σ2g(λmax),

where g(λmax) , λ2
max

(1−µλmax)3 is increasing in λmax.

Proof. See the Appendix.

The above simple upper bound is in terms of the symmetrized network’s spectral

radius. Let dmax = maxi
∑
j(gij + gji) denote the maximum degree in G + GT . Since (by

Proposition 2.1 in Lovász (2007)) max{
√
dmax, average degree in G+GT } ≤ λmax ≤ dmax,

and g(·) is an increasing function, thus as the symmetrized network G+GT becomes more

52Meaning that there exists a 0 < κ < 1 so that
∑
j gij = κτ , for all i. We further assume G+GT is k regular,

where k is finite.
53In Appendix E, we formally show the above observation is also true in cycle (clock-wise) networks, see

Proposition 16.
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dispersed (e.g., path-like networks, networks with large diameters with low dmax), the

proposed upper bound in most networks falls, decreasing the profit ratio.

Next, we provide a lower bound on the profit ratio.

Proposition 11 (Lower bound). Consider an n− agent economy with the network structure

G. Let K , (I−µ(G+GT ))−11 be the centrality of the symmetrized network. Then

Πmulti.
G

Πbi.
G

≥ 1 + σ2 ||diag(K) G||2F
||K ||1 + ||K ||22

,

where || · ||F stands for the Frobenius norm, and diag(K) = diag(k1, k2, · · · , kn). Particularly, if

||di ||22 = 1, for all i, (where di = (gi1, gi2, · · · , gni), i−th row of G), then ||diag(K) G||2F = ||K ||22.

Thus:

Πmulti.
G

Πbi.
G

≥ 1 + σ2

||K ||22
||K ||1

1 + ||K ||
2
2

||K ||1

. (17)

Proof. See the Appendix.

Finally, the above lower bound in. Eq. (17) is increasing in ||K ||22. Therefore, the

above result provides the following intuition that in most networks with a mean-preserving

spread of centralities (i.e., keep ||K ||1 fixed), as the standard deviation of the centralities

increases (i.e., increasing ||K ||22) the lower bound rises, increasing the profit ratio (fixing

||K ||1, the larger ||K ||
2
2

||K ||1
, the more disperse the network becomes).

6 Conclusion

We study optimal contracting strategies for a firm selling a divisible good that exhibits

positive externality to a finite number of consumers in a social network. A special feature

of the model, and a point of departure from the existing literature, is the magnitude of

network externality being the private information of each agent.

We explicitly characterize the firm’s optimal multilateral and bilateral contracts as

a function of the underlying network structure. Due to the presence of positive network

effects, inefficiency in one agent’s trade propagates throughout the network and creates

an unequal and network-dependent downward distortion in all the agents’ trades, even
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agents with the highest type. The distortion vector can be characterized in terms of a

Bonacich centrality of the symmetrized network. In particular, inefficiencies in the trade

of highly central agents who are connected to other central agents create the maximum

distortion, causing the maximum loss to the firm’s profits. We also explicitly character-

ize optimal bilateral contracts. Our explicit characterization shows that, surprisingly,

uncertainty in the value of the network externality among consumers is beneficial to the

firm—meaning that the firm will be better off not to invest in reducing uncertainty among

the agents.

Focusing on the suboptimality of the bilateral contracts, we explicitly character-

ize the profit gap between the multilateral and bilateral contracts in terms of network

structures. We show that heterogeneity in the centralities of different agents plays an im-

portant role in the profit gap. When the network structure is balanced, the firm’s profit

under bilateral contracts becomes independent of network structures. Furthermore, the

optimality gap increases when new links are introduced. Focusing on the core-periphery

structures, we also show that the optimality gap can grow unboundedly when the net-

work size increases. Finally, we show that increasing the standard deviation of the cen-

tralities leads to an increase in the profit ratios of bilateral and multilateral contracts.

Our results shed light on scenarios in which it is profitable for firms to invest in

finding the social network of their consumers and when it is not worth making such

investments.
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A Appendix

In the following lemma we present an alternative condition for Assumption 3 to hold.

Lemma 1. In order to obtain ρ
(

1
b

[
µτ(G+GT ) + σ2

τ
b G

TG
])
< 1, it suffices to have for any i:

µτ

 n∑
j=1

gij +
n∑
j=1

gji

+
σ2
τ

b

n∑
j=1

n∑
k=1

gkj = µτ (di(in) + di(out)) +
σ2
τ

b

n∑
i=1

di(in) < b,
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where di(in) is the in-degree and di(out) is the out-degree of agent i, and τ stands for the

corresponding ψ and θ (the mean and variance).

Proof. Let us denote S , 1
b

[
µτ(G+GT ) + σ2

τ
b G

TG
]
. Let v = [v1 v2 · · · vn]T be an eigenvector

of S and its corresponding eigenvalue be λ. Thus, by definition, we have

Sv = λv.

Let vi ,max{|v1|, |v2|, · · · , |vn|}, where |A| denotes the absolute value of A. Hence

|λvi | = |Siv| = |
n∑
j=1

sijvj | ≤ |
n∑
j=1

sij ||vi |, (18)

where Si denotes the ith row of S. Let ĝij denote an entry of GT located at ith row and jth

column, thus, ĝij = gji . Therefore,

n∑
j=1

sij =
1
b

µτ
 n∑
j=1

gij +
n∑
j=1

gji

+
σ2
τ

b

n∑
j=1

 n∑
k=1

ĝikgkj




=
1
b

µτ
 n∑
j=1

gij +
n∑
j=1

gji

+
σ2
τ

b

n∑
j=1

 n∑
k=1

gkigkj




≤ 1
b

µτ
 n∑
j=1

gij +
n∑
j=1

gji

+
σ2
τ

b

n∑
j=1

n∑
k=1

gkj

 ,
where the last inequality follows since gij ∈ [0 1], thus gkigkj ≤ gkj , ∀ k, j and i.

Now, if 1
b

[
µτ

(∑n
j=1 gij +

∑n
j=1 gji

)
+ σ2

τ
b

∑n
j=1

∑n
k=1 gkj

]
< 1, then the above inequality

implies that |
∑n
j=1 sij | < 1. Therefore, due to Eq. (18), we have |λ| < 1, and consequently,

ρ(S) < 1.

We further note that each eigenvalue of I−S is equal to 1−λwhere λ is an eigenvalue

of S. Thus ρ(S) < 1 implies that all the eigenvalues of I − S are non-zero and, therefore,

I− S is invertible.
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B Appendix: extra examples

Example B-1 (Path Network): Nature of distortion This example considers distortion

propagations in a path network when there is uncertainty in the extent of interactions.

In particular, it shows that the downstream propagation and upstream propagation due

to inefficiency in one agent’s trade are different in nature. The downstream propagation

(i.e. distortion in trades) is due to strategic complementarities. However, the upstream

propagation is due to both complementarities and the need to reduce information rent.

Consider a market including a firm and three consumers connected via simple chain

as depicted in Fig. 5. The payoff function of each agent is given as follows:

u1(x1,x2,x3, t1) = ax1 −
1
2
x2

1 − t1,

u2(θ2,x1,x2,x3, t2) = ax2 −
1
2
x2

2 +θ2 x1 x2 − t2,

u3(x1,x2,x3, t3) = ax3 −
1
2
x2

3 +γ x2 x3 − t3,

where xi and ti are consumption and payment of agent i, respectively.

321 3

Figure 5: Line network. Interconnection among the agents.

In this market, agents 2 and 3 obtain positive externality from the consumptions of

their neighbors. The externality from agent 2 to agent 3 is weighted by γ ∈ (0 1) that is

publicly known. In contrast, the externality from agent 1 to agent 2 is weighted by θ2

that is agent 2’s private information. It is, however, commonly known that θ2 ∈ {θ, θ̄},
0 < θ < θ̄ ≤ γ < 1√

2
, with Prob{θ2 = θ} = v > ∆θ

θ̄
, where ∆θ , θ̄ − θ. Firm’s objective is

to devise a menu of optimal incentive quantity-price pairs {(xi(θ2), ti(θ2))} for each agent

i, given agent 2’s report θ2 ∈ {θ, θ̄}, so as to maximize her total ex-ante profit subject to

the corresponding participation constraint (PC) of each agent i ∈ {1,2,3},54 and incentive

54The reservation utility of each agent is normalized to zero.
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compatibility constraints (IC) of agent 2. Thus, firm’s problem is precisely written as:

max
{xi(·),ti(·)}3i=1

v
3∑
i=1

ti(θ) + (1− v)
3∑
i=1

ti(θ̄)

subject to PCi(θ2), θ2 ∈ {θ, θ̄}, for all i ∈ 1,2,3,

IC2(θ2), θ2 ∈ {θ, θ̄}. (19)

In the full information case where θ2 is commonly known, only PC constraints are

active in the firm’s problem, thus, the first-best trade profile maximizes the social surplus.

In the second-best solution, the incentive constraint is active. Thus, in the firm’s problem,

the IC constraint of agent 2 binds at her efficient type and firm must give some rent to

agent 2 for revealing her type truthfully. Importantly, given the above network structure,

this rent is controlled not only by agent 2’s trade but also agent 1’s trade. To understand

this better, let us first characterize the first and second-best solutions.

Lemma 2. The first and second-best trade profiles are given by:

xSB1 (θ̄) = xFB1 (θ̄),

xSB3 (θ̄) = xFB3 (θ̄),

xSB2 (θ̄) = xFB2 (θ̄),

xFB1 (θ) = a+θ xFB2 (θ),

xFB3 (θ) = a+γ xFB2 (θ),

xFB2 (θ) =
a(1 + (θ +γ))

1− (θ2 +γ2)
.

xSB1 (θ) = a+ (θ −S) xSB2 (θ)

xSB3 (θ) = a+γ xSB2 (θ)

xSB2 (θ) =
a(1 + ((θ −S) +γ))
1− ((θ −S)2 +γ2)

.

where S ,
(

1−v
v

)
∆θ > 0.

Proof. See Appendix (omitted proofs).

As expected, when agent 2 is efficient, i.e. θ2 = θ̄, the first and second-best are

equal, i.e. xSBi (θ̄) = xFBi (θ̄), i ∈ {1,2,3} and when agent 2 is inefficient, i.e. θ2 = θ, agent 2’s

allocation is distorted downward, i.e. xSB2 (θ) < xFB2 (θ). However, while agents 1’s and 3’s

payoffs are both common knowledge, due to the positive network externality, in contrast

with adverse selection environments with no externality,55 distortion in agent 2’s trade

yields downward distortion in agents 1’s and 3’s trades. Most importantly, this distor-

tion has unequal effects on agents 1’s and 3’s trades. To understand the reasoning, we

55Since the firm has complete information about agents 1’s and 3’s payoffs, as it is standard in adverse
selection problems, one would expect to achieve efficiency in their trades, i.e., equality of the second and
the first-bests.
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look at agent 2’s information rent, that is R2 = ∆θ xSB1 (θ)xSB2 (θ). Essentially, the down-

stream propagation and upstream propagations are different in nature. The downstream

propagation (i.e. distortion in trades) is only because of strategic complementarities. Dis-

tortion in the allocation of the low-type agent 2 causes the optimal allocation of agent 3

to change. But this change is only there as a consequence of the distortion to low-type 2.

And of course, this can be simply seen in the first order optimality condition for xSB3 (θ):

any change in xSB2 (θ) has to be reflected in xSB3 (θ). But, the same is not true for agent 1’s

allocation. Changing 1’s trade also distort’s high-type 2’s incentive in mimicking low-type

2. In fact, by distorting 1’s trade downward, the firm makes sure that 2’s IC constraint

is satisfied in a cheaper way, as essentially the effective type of agent 2 is now θ2x
SB
1 (θ).

Lower xSB1 (θ) helps the firm reduces the rent she has to pay to agent 2’s high-type.

Example B-2 (Kite Network) Consider the following network:56 Let us assume all

the agents report the efficient type θ̄ except agent 6. Agent 6’s report varies from the

lowest to the highest type, i.e., θi = θ̄ for 1 ≤ i ≤ 5 and θ ≤ θ6 ≤ θ̄. If there was no

network there would be no distortion for the efficient agents 1,2,3,4,5 and onlyagent 6’s

allocation would distort downward. However, due to strategic complementarities and

the interconnection among the agents, distortion in agent 6’s allocation propagates in the

whole network. More importantly, each agent ,depending on its proximity to agent 6 ex-

periences different amount of reduction in its allocation. The following figure shows the

corresponding distortion and the way it unequally propagates throughout the network

as θ6 changes from θ to θ̄. Note that when agent 6 is efficient, i.e. θ6 = θ̄, distortion

vanishes, i.e. the first and second-best for all agents are equal. However, when θ6 < θ̄ dis-

tortion propagates and all agents experience reduction in their allocations, even though

their types are efficient.

Example B-3 (different orders in bilateral and multilateral contracts) This example

compares bilateral and multilateral contracts in a network with interconnections as in

Example B-1 (above). We consider a market including a firm and three consumer agents.

Fig. 5 visualizes the interconnection among the agents.

Let us first start with the multilateral contract.
56Parameters: gij = gji ∈ {0, .15}, i, j ∈ {1,2, · · · ,5}, capturing the interrelations among the agents. Let θi be

uniformly distributed on [ 2
3 1] (b is normalized to 1 and a = 10). In this network agent 2 is most central in

terms of Bonacich centrality.
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Figure 6: Kite network. Interconnection among the agents.
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Figure 7: With decreasing θ6 from θ̄ = 1 (i.e., her efficient type) to θ = 2
3 , more distortion

propagates throughout the network, reducing more other agents’ allocations, given that
agents 1,2, · · · ,5 are all efficient. More importantly, agents 1,2, · · · ,5 according to their
locations in the network experience different reductions in their allocations.

Multilateral contract: The payoff function of each agent is as follows:

u1(x1,x2,x3, t1) = ax1 −
1
2
x2

1 − t1,

u2(θ2,x1,x2,x3, t2) = ax2 −
1
2
x2

2 +θ2 x1 x2 − t2,

u3(x1,x2,x3, t3) = ax3 −
1
2
x2

3 + θ̄ x2 x3 − t3.
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In the above network, agents 2 and 3 obtain positive externality from the consump-

tions of their neighbors. The externality from agent 2 to agent 3 is weighed by θ̄ that is

publicly known. However, the externality from agent 1 to agent 2 is weighed by θ2 that is

agent 2’s private information. It is, however, commonly known that θ2 ∈ {θ, θ̄}, 0 < θ < θ̄,

with Prob{θ2 = θ} = v > ∆θ
θ̄

, where ∆θ , θ̄ − θ. Firm’s objective is to devise a menu of

optimal incentive quantity-price pairs {(xi(θ2), ti(θ2))} for each agent i, given agent 2’s

report θ2 ∈ {θ, θ̄}, so as to maximize her total ex-ante profit subject to the corresponding

PC of each agent i ∈ {1,2,3}, and IC constraint of agent 2. Therefore, the firm’s problem

is written as:

max
{xi(·),ti(·)}3i=1

v
3∑
i=1

ti(θ) + (1− v)
3∑
i=1

ti(θ̄)

subject to PCi(θ2), θ2 ∈ {θ, θ̄}, for all i ∈ 1,2,3,

IC2(θ2), θ2 ∈ {θ, θ̄}.

Solving the above program simply implies:

xSB1 (θ̄) = xSB3 (θ̄),

xSB1 (θ) < xSB3 (θ).

The above implies that (due to agent 2’s information rent R2(θ) = ∆θx1(θ)x2(θ)) if agent 2

reports her efficient type, then agents 1 and 3’s allocations are exactly the same. But agent

1’s allocation is distorted (downward) more than 3’s when agent 2 reports her inefficient

type.

Next, we consider the bilateral contract in the same network

Bilateral contract: We show using bilateral contracts taht the above intuition does not

carry over. Here, independent of agent 2’s report, agent 1’s allocation is always lower than

agent 3’s allocation. Focusing on the bilateral contract, each agent i’s payoff is written as
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follows:

u1(x1, t1) = ax1 −
1
2
x2

1 − t1,

u2(θ2,x2, t2) = ax2 −
1
2
x2

2 +θ2 x1 x2 − t2, θ2 ∈ {θ, θ̄}

u3(x3, t3) = ax3 −
1
2
x2

3 + θ̄ x3 E[x2(θ2)]− t3,

and, thus, the firm’s objective is to characterize

{(x1, t1), {(x2(θ), t2(θ))), (x2(θ̄), t2(θ̄))}, (x3, t3)},

maximizing her ex-ante profit with respect to the IC and PC constraints, Eqs. (11) and

(12), respectively. Finally, we have the following.

Lemma 3. Using bilateral contracts, xSB3 − x
SB
1 = ∆θ xSB2 (θ) > 0.

Therefore, in bilateral contracts independent of agent 2’s report, xSB3 > xSB1 . This is

because agent 2’s information rent is R2(θ) = ∆θ x1 x2(θ), distorting (downward) more

agent 1’s allocation.

In summary, bilateral and multilateral contracts may induce different orders on the

agents’ allocations under presence of network externalities. By similar argument, one

can show this effect can be even dramatic (for details, see Fig. 8). In the next section by

characterizing the optimal bilateral trade profiles we present a more precise comparison

for general networks.

[Analysis of Example B-1] Full information (First-best): Let θ2 be commonly

known. Hence, in the firm’s problem only PC constraints are active, and, thus, the first-

best trade profile is characterized as follows.

Lemma 4 (first-best). The first-best trade profile is given by:

xFB1 (θ̄) = a+ θ̄ xFB2 (θ̄),

xFB3 (θ̄) = a+γ xFB2 (θ̄),

xFB2 (θ̄) =
a(1 + (θ̄ +γ))
1− (θ̄2 +γ2)

,

xFB1 (θ) = a+θ xFB2 (θ),

xFB3 (θ) = a+γ xFB2 (θ),

xFB2 (θ) =
a(1 + (θ +γ))

1− (θ2 +γ2)
.

We next characterize the second-best solution.
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Figure 8: Star network. Using multilateral contracts, if agent 2 reports her efficient type,
then x3(θ̄) = xi(θ̄), for all i ∈ {1,4,5, · · · ,n}. However, using bilateral contracts, if agent 2
reports her efficient type, then x3(θ̄) > xi(θ̄), for all i ∈ {1,4,5, · · · ,n}.

Sketch of the proof of Lemma 4. In the full information case, since the payoff functions

of all agents are commonly known, the P C1(θ), P C2(θ), P C3(θ), P C1(θ̄), P C2(θ̄), and P C3(θ̄)

must bind, characterizing t1(θ), t2(θ), t3(θ), t1(θ̄), t2(θ̄), and t3(θ̄), respectively. Then,

plugging the characterized payments into the objective function and taking the first op-

timality condition yields the result.

Sketch of the proof of Lemma 2. Since the payoff functions of agents 1 and 3 are both

fully known, thus the corresponding P C1(θ), P C3(θ), P C1(θ̄) and P C3(θ̄) must bind, char-

acterizing t1(θ), t3(θ), t1(θ̄), and t3(θ̄), respectively. In addition P C2(θ) must bind, charac-

terizing t2(θ). In addition, the (downward incentive constraint) IC2(θ̄) must bind, charac-

terizing t2(θ̄), plus the corresponding information rent that is equal to R = ∆θx1(θ)x2(θ).

The result then follows from the first order optimality condition of the objective function

after plugging the payments, characterized in the above, into it.

Proof of Lemma 3. [Analysis of Example B-3] For ease of exposition, let ` , xSB2 (θ)

and ~ , xSB2 (θ̄), and ignore the superscript SB for the other agents. All the PC constraints

for agents 1, 3, and 2 (at her inefficient type) as well as the IC of agent 2 at her efficient
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type must bind. Thus, the payment are as follows:

t1 = ax1 −
1
2
x2

1,

t3 = ax3 −
1
2
x2

3 +γ x3 E[x2(θ2)],

t2(θ) = a` − 1
2
`2 +θ ` x1,

t2(θ̄) = a~− 1
2
~

2 + θ̄ ~ x1 − ∆θ x1 `︸  ︷︷  ︸
information rent

,

Firm’s objective becomes the following program:

max
x1,x2,`,~∈R+

t1 + t3 + vt2(θ) + (1− v)t2(θ̄)

By first order optimality condition, we have:

x1 = a+ vθ` + (1− v)(γ~−∆θ `),

x3 = a+γ E[x2(θ2)],

~ = a+γ(x1 + x3),

` = a+
(
θ − 1− v

v
∆θ

)
x1 +γx3 > 0.

Therefore, x3 − x1 = `∆θ > 0.

C Role of influential agents in core-periphery structures:

Infinite vs. Vanishing profit gap

In this section we formally prove the statements of Example 3 in Section 5.2.

In the next proposition, using Lemma 2, we show that among all networks within

the class of star-family the maximum loss in the firm’s profit occurs in the star-inward

network.

Proposition 12. Among all G ∈G(n) (see Definition (5)), star-inward maximizesΠmulti.
G −Πbi.

G .

Proof. See the Appendix—proof section.
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As the figure in Example 3 shows, the maximum loss (within the star-family) occurs

in star-inwards. Moreover, the figure highlights the fact that with increasing number of

agents, the firm’s loss for using bilateral contracts grows unboundedly. This, of course, is

not always true and depends on the network constructions. The following propositions

highlight the points.

Proposition 13. Consider the sequence of star-inward networks {G(n)}∞n=2, where αn , g12 =

g13 = · · · = g1n, and the rest of entries are zero. If αn = 1√
(n−1)(µ2+σ2+ε)

, where ε > 0 is constant,

then as n grows:

Πmulti.
G(n) −Π

bi.
G(n) −→ ∞.

Proof. See the Appendix—proof section.

The above proposition shows that the marginal benefit of using multilateral con-

tracts may grow unboundedly in networks that have major asymmetry in their in-degrees.

When there is an agent dominant in its in-degree (e.g., star-inward) then the loss in the

firm’s profit because of using the simpler bilateral contracts may become unbounded. In

summery, in large networks exhibiting large asymmetry in their in-degrees, firm’s restric-

tion to the simpler bilateral contracts may result in major loss in firm’s profit.

When will the profit gap vanish? In contrast, the following proposition asserts that in

large directed core-periphery economies the difference (in profit) between multilateral

and bilateral contracts might be negligible. This is intuitive because, as shown in Propo-

sition 8 (part (ii)), decreasing the influencing weights (i.e., gij ∀i, j) reduces the benefit

of using multilateral contracts. To prove the result we use Proposition 12, that is, in the

class of star-like core-periphery structures57 the benefit of using multilateral contacts in

star-inward networks is higher than the others.

Proposition 14. Let G(n) denote the set of all economies including n agents with the di-

rected star network58 structure. For any G(n) ∈ G(n), if its non-zero weights are equal to

57In which gij ∈ {0,κ} for all i, j, (κ > 0).
58With no parallel links.
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βn ,
1

(n−1)
√
µ2+σ2+ε

, where ε > 0 is constant, then as n grows:

Πmulti.
G(n) −Π

bi.
G(n) −→ 0.

Proof. See the Appendix—proof section.

D Benefits of uncertainty

Given the findings in Proposition 3 and Proposition 5, it is important to distinguish be-

tween two sources of uncertainty in the model. One source is the uncertainty among

the agents, and the other is the uncertainty between the firm and each agent. Under the

imperfect information case (the second-best) both sources are present. Under the full in-

formation case (the first-best) only uncertainty among the agents is present. Importantly,

the uncertainty between the firm and each agent manifests its effect in the disparity of

the first-best and the second-best solutions in which, as in a canonical adverse selection

problem, θ changes to ψ(θ), which is not structural. However, the impact of uncertainty

among the agents is more profound and is captured by the structure of the first-best solu-

tion. Similar arguments hold in the multilateral contract. The following remark summa-

rizes.

Remark 4. We note that similar to multilateral contracts, analyzing the effect of uncertainty

in the full information case and imperfect information case are essentially the same. In the

imperfect information case the uncertainty is in the virtual type, whereas in the full information

case uncertainty is in the type θ.

We next consider the impact of uncertainty on the firm’s expected profit.

Proposition 15. The optimal second-best expected profit of the firm increases as the uncer-

tainty in the agents’ (virtual) types increases.

Proof. See the Appendix—proof section.

The preceding proposition states that the firm prefers the uncertainty in agents’ types

to be higher. It is helpful to examine the reasoning behind this statement. As mentioned

before, increasing the uncertainty in the agents’ types has two effects: it not only in-

creases the adverse selection effect that the firm faces against each agent (uncertainty
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between firm and agents), but also increases the uncertainty in the beliefs of one agent

regarding her neighbors’ types (i.e., uncertainty among the agents). The former effect

tends to reduce the firms expected profit, as evidenced by the fact that the firm would

obtain higher profits in the full information setting. However, from Proposition 4, we

see that higher uncertainty about a neighbor’s type increases the quantity consumed by

other agents, and hence the latter effect tends to increase the firm’s expected profit. Thus,

there are two opposing forces at play here and the proposition states that the latter effect

is stronger. We attribute this to the positive externality in the network: increasing the

consumption profile of any one agent causes consumption of other agents in the network

to increase thus earning even higher profits for the firm.59

The following corollary shows that in the first-best allocation, firm’s profit is in-

creasing in the variance of the types.

Corollary 2. Let µ be fixed. Then, firm’s first-best expected profit increases with a greater

uncertainty among the agents, i.e. ∂Π
bi.
G

∂σ2 > 0.60

Proof. See the Appendix—proof section.

59It is also worth noting that employing Taylor expansions for the moments of the function ψ(·) of the

random variable θi we have: V ar(ψ(θ̃i)) ∝
(
d
dρψ(ρ)|ρ=E[θ̃i ]

)2
V ar(θ̃i) = (ψ̇(E[θ̃i]))2 V ar(θ̃i). That is, increas-

ing V ar(θ̃i) increases V ar(ψ(θ̃i)), when θ is around its mean.
60One way to change σ2 and keep µ fixed is via changing ∆θ = θ̄ −θ. That is, to ensure that a change in

σ2 does not affect µ, we change ∆θ so that µ is kept fixed.
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E Appendix: Omitted Proofs

Proof of Proposition 1. We prove each part of the proposition separately:

Proof of Part (i): To find {xFBi (·)}ni=1, we maximize the objective function in (5) point-

wise for any type profile θ. Thus, for a given θ, to find (xFB1 (θ),xFB2 (θ), · · · ,xFBn (θ)) we faced

with the following program:

max
x

n∑
i=1

axi − b2x2
i + xiθi

n∑
j=1

gijxj


subject to: xi ≥ 0 ∀i ∈ V . (20)

The Hessian matrix corresponding to the objective function in (20) is given by:
−b θ1g12 +θ2g21 · · · θ1g1n +θngn1

θ1g12 +θ2g21 −b · · · θ2g2n +θngn2
...

...
. . .

...

θ1g1n +θngn1 θ2g2n +θngn2 · · · −b


.

The Hessian matrix is a Hermitian, strictly diagonally dominant matrix61 (due to

Assumption 1) with real negative diagonal entries, thus it is negative semi-definte (due

to Sylvester’s criterion, Horn and Johnson (2012)). As a result, the objective function in

(20) is concave.

Next, assuming the solution to program (20) is interior implies that it satisfies the

following first order optimality condition:

a− bxFBi (θ) +

θi n∑
j=1

gijx
FB
j (θ) +

n∑
j=1

gjiθjx
FB
j (θ)

 = 0, ∀ i ∈ V . (21)

Recall that Mθ = diag(θ1,θ2, · · · ,θn). Thus, the above equation in its matrix form is written

61A matrix is called strictly diagonally dominant if for every row of the matrix, the magnitude of the
diagonal entry in a row is larger than the sum of the magnitudes of all the other (non-diagonal) entries in
that row. That is, the matrix A = [aij ](i,j)∈V 2 is diagonally dominant if |aii | >

∑
j,i(|aij |+ |aji |), for all i ∈ V .
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as:

a1 + (MθG+GTMθ)xFB(θ) = bxFB(θ),

Hence, we obtain:

xFB(θ) = a [bI− (MθG+GTMθ)]−11.

Note that since (bI − (MθG + GTMθ)) is a strictly diagonally dominant matrix, it is

invertible (due to Levy-Desplanques theorem, Horn and Johnson (2012)). Furthermore,

notice that xFB(θ) is in the positive orthant, since a > 0 and Assumption 1. Finally, we

show that there is no corner solution, and, consequently, the above solution is unique.

Suppose it were not true; that is, there exists a non-interior solution that we denote it by

y∗. LetW ⊂ V , (W , ∅), such that x∗i = 0 if and only if i ∈ V /W (that is, x∗i > 0 when i ∈W ).

Since a > 0, thus 0 can not be an optimal solution, therefore, W , ∅. Let y∗i = 0, due to the

optimality condition, by (21) we should have:

a− byi +

θi n∑
j=1

gijyj +
n∑
j=1

gjiθjyj


∣∣∣∣∣∣
y=y∗

= a+

θi n∑
j=1

gijy
∗
j +

n∑
j=1

gjiθjy
∗
j

 ≤ 0.

However, since a > 0, achieving the last inequality is impossible, which is a contradiction.

Proof of Part (ii): Define, for every i and θi ∈ [θ θ̄],

Vi(θi) , Eθ−i

[
axi(θi ,θ−i)−

b
2
x2
i (θi ,θ−i)

]
(22)

γi(θi) , Eθ−i

xi(θi ,θ−i)∑
j,i

gijxj(θi ,θ−i)

 (23)

Ti(θi) , Eθ−i [ti(θi ,θ−i)] . (24)

Thus, the agent i’s interim utility for reporting θ̂i , while her real type is θi , is given by:

Ui(θi , θ̂i) = θiγi(θ̂i) +Vi(θ̂i)− Ti(θ̂i).

By appealing to the revenue equivalence theorem, a direct quantity-price schedule
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{xSBi (·), tSBi (·)}ni=1 is IC and PC if and only if for every i ∈ V :

(i) γi(θi) is increasing;

(ii) For every θi ∈ [θ θ̄]:

Ti(θi) = θiγi(θi) +Vi(θi)−
∫ θi

θ
γi(τ)dτ. (25)

Given the specification of the incentive compatible and individual rational mechanisms

the firm’s problem is re-written as:

max
{xi(·),ti(·)}ni=1

n∑
i=1

Eθi
[
Ti(θi)

]
subject to Ti(θi) = θiγi(θi) +Vi(θi)−

∫ θi

θ
γi(τ)dτ ∀i, θi , (26)

γi(θi) is increasing ∀ i (27)

To find the solution of the above program we first ignore the monotonicity constraints

(27), later we show (27) is indeed satisfied. Thus, plugging (26) into the objective func-

tion, and using the fact that Eθi

[∫ θi
θ
γi(τ)dτ

]
= Eθi

[1−F(θi )
f (θi )

γi(θi)
]

we obtain

max
{xi(·)}ni=1

n∑
i=1

Eθi [ψ(θi)γi(θi) +Vi(θi)] , (28)

recall that ψ(θi) = θi −
1−F(θi )
f (θi )

(virtual type). Given the definitions in (22)-(24), and the

fact that E[·] is a linear operator, (28) can be re-written as:

max
{xi(·)}ni=1

Eθ
n∑
i=1

ψ(θi)xi(θi ,θ−i)
∑
j,i

gijxj(θi ,θ−i) + axi(θi ,θ−i)−
b
2
x2
i (θi ,θ−i)


≡ max
{xi(·)}ni=1

Eθ
n∑
i=1

ψ(θi)xi(θ)
∑
j,i

gijxj(θ) + axi(θ)− b
2
x2
i (θ)

 . (29)

To find the optimal solution to (29), we maximize it point-wise. Let θ ∈ [θ θ̄]n be fixed
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and given, hence {xSBi (θ)}ni=1 solves the following program:

max
{xi(θ)}ni=1

n∑
i=1

ψ(θi)xi(θ)
∑
j,i

gijxj(θ) + axi(θ)− b
2
x2
i (θ)

 . (30)

Note that the objective function in (29) is concave. Because its corresponding Hes-

sian matrix,
−b ψ(θ1)g12 +ψ(θ2)g21 · · · ψ(θ1)g1n +ψ(θn)gn1

ψ(θ1)g12 +ψ(θ2)g21 −b · · · ψ(θ2)g2n +ψ(θn)gn2
...

...
. . .

...

ψ(θ1)g1n +ψ(θn)gn1 ψ(θ2)g2n +ψ(θn)gn2 · · · −b


,

is Hermitian and strictly diagonally dominant and thus it is negative semi-definte (due to

Sylvester’s criterion, Horn and Johnson (2012)). The diagonally dominant property of the

above matrix is ensured by Assumption 1, 2, and the fact that ψ(θi) ≤ θi for all θi ∈ [θ θ̄]

and i ∈ V .

The first order optimality condition of (30) (assuming the solution is interior) yields

a− bxSBi (θ) +

ψ(θi)
n∑
j=1

gijx
SB
j (θ) +

n∑
j=1

gjiψ(θj)x
SB
j (θ)

 = 0, ∀ i ∈ V . (31)

Recall that Mψ = diag(ψ(θ1),ψ(θ2), · · · ,ψ(θn)). Thus, the above equation in its matrix form

is written as:

a1 + (MψG+GTMψ)xSB(θ) = bxSB(θ).

Since (bI− (MψG+GTMψ)) is a strictly diagonally dominant matrix, it is invertible (due to

Levy-Desplanques theorem, Horn and Johnson (2012)). Thus,

xSB(θ) = a [bI− (MψG+GTMψ)]−11. (32)

Furthermore, notice that xSB(θ) is in the positive orthant, since a > 0 and Assumption 1

and 2.

Notice that, since ψ(θi) ≥ 0 for all θi ∈ [θ θ̄] and i ∈ V , similar to the proof of the
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first-best case, one can easily show xSB(θ), characterized in (32), is indeed the unique to

the program (30), for any given θ.

Next, we present a lemma that we make a use of it in the proof later.

Lemma 5. Let K , [bI− (MψG+GTMψ)]−1. Then, ∂K
∂θi

is a matrix with non-negative entries, for

any i ∈ V .

Proof. Observe that, by chain rule,

0 =
∂I
∂θi

=
∂KK−1

∂θi
=
∂K
∂θi

K−1 +K
∂K−1

∂θi
. (33)

Furthermore, as G does not depend on θi , we have

∂K−1

∂θi
=

∂
∂θi

[
bI− (MψG+GTMψ)

]
= − ∂

∂θi

[
(MψG+GTMψ)

]
= −

∂Mψ

∂θi
G−GT

∂Mψ

∂θi

= −(EiiG+GT Eii),

where Eii ,
∂Mψ
∂θi

is a matrix with ∂ψ(θi )
∂θi

at the ii th entry, and zero otherwise. Notice that
∂ψ(θi )
∂θi

≥ 0, (due to the monotonicty assumption in the hazard rate). Thus, using (57) we

obtain

∂K
∂θi

= −K ∂K
−1

∂θi
K = K(EiiG+GT Eii)K.

Thus, since the right hand side in the above equation is non-negative, ∂K
∂θi

is a matrix with

non-negative entries.

This Lemma has two important implications: (i)
∂xSBi (θ)
∂θi

≥ 0, this property is intu-

itively immediate due to the IC constraint. (ii)
∂xSBj (θ)

∂θi
≥ 0, (j , i), this property is due to

the strategic complement property.

Finally, to wrap up the proof, it is left to show that γi(θi) is increasing in θi , for all

θi ∈ [θ θ̄], and i ∈ V (recall that monotonicity of γi(θi) is the constraint must be satisfied

to achieve IC).
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By the definition of γi(θi) (see (23)) and the above two points ((i) and (ii)), we have:

∂γi(θi)
∂θi

= Eθ−i

[
∂{xi(θi ,θ−i)

∑
j,i gijxj(θi ,θ−i)}
∂θi

]

= Eθ−i


∂xi(θi ,θ−i)

∂θi︸        ︷︷        ︸
≥0 by (i)

∑
j,i

gijxj(θi ,θ−i) + xi(θi ,θ−i)
∑
j,i

gij
∂xj(θi ,θ−i)

∂θi︸        ︷︷        ︸
≥0 by (ii)


≥ 0.

The proof is complete.

Proof of Lemma 1. Proof of Part (i) follows directly from Proposition 1 and the definition

of Bonacich centrality measure (see Def. 1). We proceed to prove the rest.

Given the definition of distortion vector and make a use of Proposition 1, we obtain:

d(θ) = a
(
[bI− (MθG+GTMθ)]−1 − [bI− (MψG+GTMψ)]−1

)
1

=
a
b

(
[I− 1

b
(MθG+GTMθ)]−1 − [I− 1

b
(MψG+GTMψ)]−1

)
1.

Next, defineM , [I− 1
b (MθG+GTMθ)]−1 and N , [I− 1

b (MψG+GTMψ)]−1. Thus, their entries

are characterized as:

mij =
∞∑
k=0

1
bk
f

[k]
ij

nij =
∞∑
k=0

1
bk
h

[k]
ij

where f [k]
ij is the ij entry of (MθG + GTMθ)k, and h

[k]
ij is the ij entry of (MψG + GTMψ)k.

Recall that ψ(τ) = τ − 1−F(τ)
f (τ) , τ ∈ [θ θ̄]. Thus, ψ(τ) ≤ τ with equality only at τ = τ̄ . This

implies that f [k]
ij ≥ h

[k]
ij , for any k. Consequently, mij ≥ nij , for all i, j. Since θj < θ̄, thus

ψ(θj) < θj . Consequently, the result follows.

Proof of Proposition 2. We prove the parts separately as follows.

Part (i): For ease of exposition we consider agent 1, i.e., i = 1. Thus, θ1 ≤ θ̄, while all the
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other agents are efficient, i.e., θj = θ̄ (for all j , 1). Let (θ1, θ̄−1) denote the corresponding

type profile.

Since θ1 is sufficiently close to θ̄, thus:

T1(θ1, θ̄−1) = T1(θ̄1, θ̄−1)− (θ̄ −θ1)T ′1 (θ̄1, θ̄−1), (34)

where T ′1 (θ̄1, θ̄−1) = ∂T ′1 (θ1,θ̄−1)
∂θ1

|θ1=θ̄1
.

Notice that, by Definition 3, T1(θ̄1, θ̄−1) = 1Td(θ̄1, θ̄−1). According to Proposition (1),

d(θ̄1, θ̄−1) = 0, since Mθ = Mψ = diag(θ̄, θ̄, · · · , θ̄), and thus T1(θ̄1, θ̄−1) = 0.

Therefore, we only need to characterize (θ̄ − θ1)T ′1 (θ̄1, θ̄−1). To do so, for ease of

exposition, define S−1 , (I− 1
b (MθG+GTMθ))−1 and T −1 , (I− 1

b (MψG+GTMψ))−1. Therefore,

due to Proposition 1, d(θ) = a
b (S−1 − T −1)1.

Next, since SS−1 = I, we have, ∂S
∂θ1
S−1 + S ∂S

−1

∂θ1
= 0, that yields:

∂S−1

∂θ1
= −S−1 ∂S

∂θ1
S−1.

By the definition,

∂S
∂θ1
|θ1=θ̄ = −1

b
[diag(1,0, · · · ,0)G+GTdiag(1,0, · · · ,0)]

= −1
b

(
R1 +RT1

)
,

where,

R1 ,


g11 g12 · · · g1n

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


. (35)

Similarly,

∂T
∂θ1
|θ1=θ̄ = −1

b
[diag(ψ′(θ̄),0, · · · ,0)G+GTdiag(ψ′(θ̄),0, · · · ,0)]

= −1
b
ψ′(θ̄)

(
R1 +RT1

)
,
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where ψ′(θ̄) = 1−φ′(θ̄). Moreover, since ψ(θ̄) = θ̄, hence S−1|θ=θ̄ = T −1|θ=θ̄. Therefore,

∂d(θi , θ̄−1)
∂θ1

|θ1=θ̄ =
a
b

[
−S−1 ∂S

∂θ1
S−1 + T −1 ∂T

∂θ1
T −1

]
1 =

a
b

[
−S−1

(
∂S
∂θ1
− ∂T
∂θ1

)
S−1

]
1

=
a

b2

[
−S−1

(
(−1 +ψ′(θ̄))(R1 +RT1 ))

)
S−1

]
1

=
a

b2 (1−ψ′(θ̄))
[
S−1

(
R1 +RT1

)
S−1

]
1

=
a

b2φ
′(θ̄)

[
S−1

(
R1 +RT1

)
S−1

]
1

The above equality along with (34) yields

T1(θ1, θ̄−1) = −(θ̄ −θ1)T ′1 (θ̄1, θ̄−1)

= (θ1 − θ̄) 1T
∂d(θi , θ̄−1)

∂θ1
|θ1=θ̄

=
a

b2

(
(θ1 − θ̄)φ′(θ̄)

)
1T

[
S−1

(
R1 +RT1

)
S−1

]
|θ1=θ̄ 1

(a)
=
a

b2

(
(θ1 − θ̄)φ′(θ̄)

)
[k1 k2 · · ·kn]

(
R1 +RT1

)
[k1 k2 · · ·kn]T

(b)
=
a

b2

(
(θ1 − θ̄)φ′(θ̄)

)2∑
j

k1kjg1j

 ,
where (a) follows since S−1|θ=θ̄1 = T −1|θ=θ̄1 =

(
I− 1

b θ̄(G+GT )
)−1

1 , [k1 k2 · · · kn]T , where

ki is agent i’s Bonacich centrality in G+GT . And (b) follows since62

[k1 k2 · · ·kn]
(
R1 +RT1

)
[k1 k2 · · ·kn]T = [k1 k2 · · ·kn]

g11k1 +
∑
j

g1jkj g12k1 g13k1 · · · g1nk1


T

= k1

∑
j

g1jkj +
∑
j

g1jkjk1

= 2
∑
j

g1jkjk1.

62Recall that g11 = 0.
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The above computations work for all i. Thus

Ti(θi , θ̄−i) =
2a
b2 (θi − θ̄)φ′(θ̄)

∑
j

kikjgij


=

2a
b2 (θ̄ −θi) |φ′(θ̄)|

∑
j

kikjgij

 . (36)

Notice that φ′(θ̄) < 0.

Part (ii): Lets first derive E[ΠFB]. As shown in Proposition 1, the optimal (first-best)

trade profile is xFB(θ) = a [bI − (MθG + GTMθ)]−11. Thus, for each type profile θ the (ex

post) firm’s profit is given by the following. For ease of exposition, let xi denote agent i’s

(first-best) allocation with respect to the type profile θ then

n∑
i=1

axi − b2x2
i + xiθi

∑
j

gijxj

 = a1T x− b
2

xT x + (Mθx)TGx

= a1T x− b
2

xT x +
1
2

xT (MθG+GTMθ)x

= a1T x− 1
2

[
xT [bI− (MθG+GTMθ)] x

]
=
a2

2
1T [bI− (MθG+GTMθ)]−11.

Therefore E[ΠFB] = a2

2 1TE
[
[bI− (MθG+GTMθ)]−1

]
1.

Next, to derive E[ΠSB] we first note that as shown in Proposition 1 (see (26), (28),

(29)) E[ΠSB] = E
∑n
i=1T (θi) = E

∑n
i=1

[
ψ(θi)yi(θ)

∑
j,i gijyj(θ) + ayi(θ)− b2y

2
i (θ)

]
, where yi(θ) =

xSBi (θ). Thus, similar to the full information case, let yi denote agent i’s (second-best) al-
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location with respect to the type profile θ then

n∑
i=1

ayi − b2y2
i + yiψ(θi)

∑
j

gijyj

 = a1T y− b
2

yT y + (Mψy)TGy

= a1T y− b
2

yT y +
1
2

yT (MψG+GTMψ)y

= a1T y− 1
2

[
yT [bI− (MψG+GTMψ)] y

]
=
a2

2
1T [bI− (MψG+GTMψ)]−11.

Thus,

E[ΠFB −ΠSB] =
a2

2
E1T

[
[bI− (MθG+GTMθ)]−1 − [bI− (MψG+GTMψ)]−1

]
1

=
a2

2
E T (θi ,θ−i).

Next, under the assumption that it is known to the firm that θj = θ̄, for all j , i. Then,

when θi ∈ {θ, θ̄} with Prob{θi = θ} = v > ∆θ
θ̄

then E[ΠFB −ΠSB] = a2

2 Prob{θi = θ}Ti(θi =

θ, θ̄−i) = a3

b2 v ∆θ |φ′(θ̄)|
[∑

j kikjgij
]
, where the last equality follows by (36) and the fact

that ∆θ is sufficiently small. Therefore, it is immediate that V ∗ = argmaxi∈{1,2,··· ,n}E[ΠFB−
ΠSB] = argmaxi∈{1,2,··· ,n}

∑n
j=1 kikjgij , completing the proof.

Proof of Proposition 3. We first derive the second-best trade profile. Define, for every i

and θi ∈ [θ θ̄],

Vi(θi) , axi(θi)−
b
2
x2
i (θi) (37)

γi(θi) , xi(θi)
∑
j,i

gijEθj [xj(θj)] (38)

Thus, the agent i’s interim utility for reporting θ̂i , while her real type is θi , is given by:

Ui(θi , θ̂i) = θiγi(θ̂i) +Vi(θ̂i)− ti(θ̂i).

By appealing to the revenue equivalence theorem, a direct quantity-price schedule
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{xSBi (·), tSBi (·)}ni=1 is IC and PC if and only if for every i ∈ V :

(i) γi(θi) is increasing;

(ii) For every θi ∈ [θ θ̄]:

ti(θi) = θiγi(θi) +Vi(θi)−
∫ θi

θ
γi(τ)dτ. (39)

Given the specification of the incentive compatible and individual rational mechanisms

the firm’s problem is re-written as:

max
{xi(·),ti(·)}ni=1

n∑
i=1

Eθi
[
ti(θi)

]
subject to ti(θi) = θiγi(θi) +Vi(θi)−

∫ θi

θ
γi(τ)dτ ∀i, θi , (40)

γi(θi) is increasing ∀ i (41)

To find the solution of the above program we first ignore the monotonicity constraints

(41), later we show (41) is indeed satisfied. Note that Eθi

[∫ θi
θ
γi(τ)dτ

]
= Eθi

[1−F(θi )
f (θi )

γi(θi)
]
.

Hence, we obtain

max
{xi(·)}ni=1

n∑
i=1

Eθi [ψ(θi)γi(θi) +Vi(θi)] , (42)

recall that ψ(θi) = θi −
1−F(θi )
f (θi )

(virtual type). Given the definitions in (37)-(38), and the

fact that E[·] is a linear operator, (42) can be re-written as:

max
{xi(·)}ni=1

E
n∑
i=1

axi(θi)− b2x2
i (θi) +ψ(θi)xi(θi)

∑
j,i

gijE[xj(θ̃j)]

 (43)

To find the optimal solution to (43), we maximize it point-wise.
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Note that
∑n
i=1 E

[
ψ(θi)xi(θi)

[∑
j,i gijE[xj(θ̃j)]

]]
can be rewritten as

= E

ψ1(θ1)x1(θ1)
[∑
j,1

g1jE[xj(θ̃j)]
]+

n∑
i=2

E

ψi(θi)xi(θi)[∑
j,i

gijE[xj(θ̃j)]
]

= E

ψ1(θ1)x1(θ1)
[∑
j,1

g1jE[xj(θ̃j)]
]+ E

x1(θ1)
[∑
j,1

gj1E[ψj(θ̃j)xj(θ̃j)]
]

+
n∑
i=2

E

ψi(θi)xi(θi)
[∑
j,i
j,1

gijE[xj(θ̃j)]
]

= E

ψ1(θ1)x1(θ1)
[∑
j,1

g1jE[xj(θ̃j)]
]

+ x1(θ1)
[∑
j,1

gj1E[ψj(θ̃j)xj(θ̃j)]
]

+
n∑
i=2

E

ψi(θi)xi(θi)
[∑
j,i
j,1

gijE[xj(θ̃j)]
] (44)

Now, plugging (44) in the firm’s problem, i.e. Eq. (43), and decoupling agent 1 from the

rest, we obtain

n∑
i=1

E

axi(θi)− b2x2
i (θi) +ψ(θi)xi(θi)

∑
j,i

gijE[xj(θ̃j)]


=

n∑
i=2

E

axi(θi)−
b
2
x2
i (θi) +ψ(θi)xi(θi)

∑
j,i
j,1

gijE[xj(θ̃j)]


+ E

a1x1(θ1)− b
2
x2

1(θ1) +ψ(θ1)x1(θ1)
[∑
j,1

g1jE[xj(θ̃j)]
]

+ x1(θ1)
∑
j,1

gj1E[ψj(θ̃j)xj(θ̃j)]

 .
FOC with respect to x1(θ), by keeping x−1 fixed, gives

a− bx1(θ1) +ψ(θ1)
[∑
j,1

g1jE[xj(θ̃j)]
]

+
∑
j,1

gj1E[ψj(θ̃j)xj(θ̃j)] = 0. (45)
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a similar equality can be obtained for any agent i = 1,2, · · · ,n, that is for any i, we

have

0 = a− bxi(θi) +ψ(θi)
n∑
j=1

gijE[xj(θ̃j)] +
n∑
j=1

gjiE[ψ(θ̃j)xj(θ̃j)]. (46)

Equation (46) is rewritten in its matrix form as

bx(θ) = a1 +ψ(θ)GE[x(θ̃)] +GTE[ψ(θ̃)x(θ̃)]. (47)

Taking expectation, we obtain

bE[x(θ̃)] = a1 + E[ψ(θ̃)]GE[x(θ̃)] +GTE[ψ(θ̃)x(θ̃)]

= a1 +µψGE[x(θ̃)] +GTE[ψ(θ̃)x(θ̃)]. (48)

Thus, we have

GTE[ψ(θ̃)x(θ̃)] = (bI−µψG)E[x(θ̃)]− a1. (49)

Next, multiplying (47) by ψ(θ) and taking expectation63, we obtain

bE[ψ(θ̃)x(θ̃)] = E[ψ(θ̃)]a1 + E[ψ2(θ̃)]GE[x(θ̃)] + E[ψ(θ̃)]GTE[ψ(θ̃)x(θ̃)]

= µψa1 + E[ψ2(θ̃)]GE[x(θ̃)] +µψG
TE[ψ(θ̃)x(θ̃)]. (50)

Substituting for GTE[ψ(θ̃)x(θ̃)] from (49), we have,

bE[ψ(θ̃)x(θ̃)] = µψa1 + E[ψ2(θ̃)]GE[x(θ̃)] +µψ
(
(bI−µψG)E[x(θ̃)]− a1

)
= µψb E[x(θ̃)] +

(
E[ψ2(θ̃)]−µ2

ψ

)
GE[x(θ̃)]

= µψb E[x(θ̃)] + σ2
ψGE[x(θ̃)]

= (µψbI+ σ
2
ψG) E[x(θ̃)],

where the second last line follows from the fact that σ2
ψ = Var[ψ(θ̃)] = E[ψ2(θ̃)] − µ2

ψ.

63Note that since ψ(θ) and B are diagonal matrices we have, ψ(θ)B = Bψ(θ).
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Therefore,

E[ψ(θ̃)x(θ̃)] =

µψ I+ σ2
ψ

b
G

 E[x(θ̃)]. (51)

Substituting the expression for E[ψ(θ̃)x(θ̃)] in (48), we obtain

bE[x(θ̃)] = a1 +µψGE[x(θ̃)] +GTE[ψ(θ̃)x(θ̃)]

= a1 +µψGE[x(θ̃)] +GT
µψ I+ σ2

ψ

b
G

E[x(θ̃)]

= a1 +

µψ(G+GT ) +
σ2
ψ

b
GTG

E[x(θ̃)]. (52)

Therefore, we obtain the following linear systems of equations:bI−µψ(G+GT )−
σ2
ψ

b
GTG

E[x(θ̃)] = a1.

From Assumption 3, we know that the coefficient matrix is invertible. Thus, we obtain,

E[x(θ̃)] =

bI−µψ(G+GT )−
σ2
ψ

b
GTG


−1

a1 = aKψ1, (53)

where Kψ ,

[
bI−µψ(G+GT )−

σ2
ψ

b G
TG

]−1

.

Finally, from equations (47), (49), and (53), we obtain,

x(θ) = b−1
[
a1 +ψ(θ)GKψΛ+

(
(bI−µψG)Kψa1− a1

)]
= b−1

[
ψ(θ)GKψa1 +

(
bI−µψG

)
Kψa1

]
= b−1

[
(ψ(θ)−µψ)GKψa1 + bKψa1

]
= b−1

(
ψ(θ)−µψ

)
GKψa1 +Kψa1. (54)
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Therefore,

xSB(θi) =
a
b

(ψ(θi)−µψ)[GKψ1]i + a[Kψ1]i .

To complete the proof, we next show xSB > 0. Note that µψ = E[ψ(θi)] = θ. Thus,

ψ(θ)−µψ = −
1−F(θ)
f (θ)

= − 1
f (θ)

.

Define, α , 1
b

1
f (θ) . By Assumption 3, bI−µψ(G+GT )−

σ2
ψ

b G
TG is invertible. Thus,

Kψa1 =

bI−µψ(G+GT )−
σ2
ψ

b
GTG


−1

a1

=

I− µψb (G+GT )−
σ2
ψ

b2 G
TG


−1
a
b

1

= (I −A)−1 a
b

1,

where A ,
µψ
b (G+GT ) +

σ2
ψ

b2 GTG. Then, we have for θ = (θ1,θ2, · · · ,θn):

x(θ) ≥ x(θ)

= (I−αG)Kψa1

= (I−αG)(I−A)−1b−1a1
(a)
= (I−αG)(I+A+A2 +A3 + · · · )b−1a1

=
(
I−αG+A−αGA+A2 −αGA2 +A3 + · · ·

)
b−1a1

=
(
I+ (A−αG) + (A−αG)A+ (A−αG)A2 + · · ·

)
b−1a1

> 0,

where (a) follows since by Assumption 3, ρ(A) < 1, thus (I −A)−1 = I +A +A2 + · · · , and

the last inequality is correct because b−1a > 0 and A − αG ≥ 0 (since ψ(θ) ≥ 0). Finally,

monotonicity of xSB(θi) is immediate since ψ(θi) is monotone in θi , completing the proof.

Full information (first-best): In this case there is no IC and all the PC constraint must
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bind, characterizing the payments. Thus:

ti(θi) = axi(θi)−
b
2
x2
i (θi) +θixi(θi)

n∑
j=1

gijE[xj(θj)].

Hence, the firms problem is written as

max
x,t

n∑
i=1

E[ti(θi)]

subject to PC.

Plugging the payments in the objective function we have, and using FOC with respect to

xi(θi) give

0 = a− bxi(θi) +θi
n∑
j=1

gijE[xj(θj)] +
n∑
j=1

gjiE[θjxj(θj)]. (55)

Eqs. (55) can be re-written in the following compact form:

0 = a− bxi(θi) +θi
n∑
j=1

gijE[xj(θj)] +
n∑
j=1

gjiE[θjxj(θj)], (56)

where θi ∈ [θ, θ̄], for all i. The above equality is similar to (46), thus, by following the

same argument as in the second-best we obtain:

xFBi (θi) =
a
b

(θi −µ)[GK1]i + a[K1]i ,

where K ,
[
bI−µ(G+GT )− σ2

b G
TG

]−1
.

Proof of Proposition 4. The first part is immediate from Proposition 3. For the second,

consider the full information case. Using Proposition 3, xFBi (θi) = a
b (θi −µ)[GK1]i + a[K1]i

where K ,
[
bI−µ(G+GT )− 1

bG
TΣG

]−1
, and Σ is a diagonal matrix where V ar[θi] = σ2

i is in

entry ii. Since I = KK−1, then by chain rule we obtain,

0 =
∂I

∂σ2
i

=
∂KK−1

∂σ2
i

=
∂K

∂σ2
i

K−1 +K
∂K−1

∂σ2
i

. (57)
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where 0 denotes a n×n zero matrix. Then

∂K−1

∂σ2
i

=
∂

∂σ2
i

[
bI−µ(G+GT )− 1

b
GTΣG

]
= −1

b
∂

∂σ2
i

[
GTΣG

]
= −1

b
GT

∂Σ

∂σ2
i

G = −1
b
GTEii G,

where Eii = ∂Σ
∂σ2

i
is a matrix containing only one non-zero entry equal to one located at the

intersection of the i′th row and i′th column. Finally, using the last equality in (57) we

obtain

∂K

∂σ2
i

= −K ∂K
−1

∂σ2
i

K =
1
b
KGTEiiGK.

From the last equality, since all the matrices are component-wise non-negative, we imply

that ∂K
∂σ2

i
is a matrix with non-negative entries, that completes the proof. We note that one

way to change σi while keeping its mean fixed is to change the support of Θi = [θ θ̄]. The

proof for the imperfect information case is similar.

Proof of Proposition 5. Given (14), using E[ψ(θ̃)−µψ] = 0, we have

η , GE[x(θ̃)] = GKψΛ, (58)

where η = (η1,η2, · · · ,ηn)T and Λ , a1.

In order to derive E
[∑n

i=1 ti(θi)
]
, we decompose it into three terms as follows

E

 n∑
i=1

ti(θi)

 = E
n∑
i=1

axi(θi)− b2x2
i (θi) +ψ(θi)xi(θi)

∑
j,i

gijE[xj(θ̃j)]


= ζ1 + ζ2 + ζ3,
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where

ζ1 =
n∑
i=1

E[ψ(θi)xi(θi)]

∑
j,i

gijE[xj(θ̃j)]

 =
n∑
i=1

ηiE[ψ(θi)xi(θi)],

ζ2 =
−b
2

n∑
i=1

E[x2
i (θi)],

ζ3 = a
n∑
i=1

E[xi(θi)].

It follows that

ζ1 =
n∑
i=1

ηi E[ψi(θ̃i)xi(θ̃i)] = ηTE[ψ(θ̃)x(θ̃)]
(a)
= (GKψΛ)T

µψ I+ σ2
ψ

b
G

KψΛ
=
σ2
ψ

b
ΛTKTψG

TGKψΛ+µψΛ
TKTψG

TKψΛ, (59)

where (a) follows from (51), (that is, E[ψ(θ̃)x(θ̃)] =
(
µψ +

σ2
ψ

b G

)
E[x(θ̃)] =

(
µψ +

σ2
ψ

b G

)
KψΛ).

Furthermore, we obtain

ζ2 =
−b
2

E

 n∑
i=1

x2
i (θ̃i)

 =
−b
2

E
[
x(θ̃)T x(θ̃)

]
=
−b
2

E
[[1
b

(ψ(θ̃)−µψ)GKψΛ+KψΛ
]T [1

b
(ψ(θ̃)−µψ)GKψΛ+KψΛ

]]
=
−b
2

E
[[
ΛTKTψG

T (ψ(θ̃)−µψ)
1
b

+ΛTKTψ

][1
b

(ψ(θ̃)−µψ)GKψΛ+KψΛ
]]

(a)
=
−σ2

ψ

2b
ΛTKTψG

TGKψΛ−
b
2
ΛTKTψKψΛ, (60)

where (a) is followed by the fact that E[(ψ(θ̃)−µψ)] = 0 and E[(ψ(θ̃)−µψ)2] = σ2
ψ.

Following the same arguments we also obtain

ζ3 = aE[x(θ̃)] = a1TKψΛ =ΛTKψΛ. (61)
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Now, from (59), (60) and (61) we obtain

ΠG = E

 n∑
i=1

ti(θi)

 = ζ1 + ζ2 + ζ3

=
σ2
ψ

2b
ΛTKTψG

TGKψΛ+µψΛ
TKTψG

TKψΛ−
b
2
ΛTKTψKψΛ+ΛTKψΛ. (62)

Note that, since µψΛTK
T
ψG

TKψΛ is a scalar, thus

µψΛ
TKTψG

TKψΛ =
(
µψΛ

TKTψG
TKψΛ

)T
= µψΛ

TKTψGKψΛ.

Thus

µψΛ
TKTψG

TKψΛ =
1
2

[
µψΛ

TKTψG
TKψΛ+

(
µψΛ

TKTψG
TKψΛ

)T ]
=

1
2

[
ΛTKTψ [µψ

(
GT +G

)
] KψΛ

]
.

Hence by the preceding equality, we can simplify (62) as

ΠG =
σ2
ψ

2b
ΛTKTψG

TGKψΛ+µψΛ
TKTψG

TKψΛ−
b
2
ΛTKTψKψΛ+ aKψΛ

=
σ2
ψ

2b
ΛTKTψG

TGKψΛ+
1
2

[
ΛTKTψ [µψ

(
GT +G

)
] KψΛ

]
− b

2
ΛTKTψKψΛ+ΛTKψΛ

=
1
2
ΛTKTψ

σ2
ψ

b
GTG+µψ(GT +G)− bI

KψΛ+ΛTKψΛ

a= −1
2
ΛTKTψK

−1
ψ KψΛ+ΛTKψΛ

= −1
2
ΛTKTψΛ+ΛTKψΛ

b=
1
2
ΛTKψΛ

c=
a2

2
1TKψ1,

where (a) follows from the definition of Kψ and (b) follows from symmetry of Kψ, i.e.,

Kψ = KTψ and (c) follows becauseΛ = a1 by its definition. The proof for the full information

case follows similar steps and the final answer becomes Πbi.
G = a2

2 1TK1.
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Proof of Proposition 6. Recall that b = 1 and we are in the full information case. The

same proof works for the incomplete information case as well.

Following the same steps as in the proof of Proposition 5, one can show

Πbi.
G =

a2

2
1TK1 =

a2

2
1T

[
I−µ(G+GT )− σ2GTG

]−1
1.

Since σ2 is chosen to be small, thus Taylor expansion of Πbi.
G around σ2 = 0 gives

Πbi.
G =

a2

2
1T

[
S−1 + σ2 S−1 GTG S−1

]
1,

where S−1 , [I−µ(G+GT )]−1.

Since G is symmetric (i.e. G = GT ) it has n district eigenvalues and is thus diago-

nalizable. Therefore, there exists an invertible matrix V so that V −1GV = Λ, where Λ is

a diagonal matrix with the eigenvalues of G on its diagonal, and columns of V are the

eigenvectors of G. Therefore, G = VΛV −1. In addition, the eigenvectors can be chosen

to form an orthonormal basis of R
n, meaning that V is set to be orthonormal. That is

V TV = VV T = V −1V = I. Moreover,

S−1 =
∞∑
i=0

(2µ G)i =
∞∑
i=0

(
2µ VΛV −1

)i
= V

 ∞∑
i=0

(2µ Λ)i
V −1 = VΛ1V

−1, (63)

whereΛ1 is a diagonal matrix where its k−th element is 1
1−2µλk

, (note that (by Assumption

3) 2µλk ≤ 2µλmax < 1, for all k). By following similar argument as in (63), one can also

show:

S−1 GTG S−1 = VΛ2
1Λ

2V −1. (64)

Eq. (63) together with (64) yield:

Ξ , S−1 + σ2 S−1 GTG S−1 = V

Λ1 + σ2(Λ1Λ)2︸             ︷︷             ︸
diagonal

V −1. (65)
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The above equality characterizes eigenvalues of Ξ in terms of λ1,λ2, · · · ,λn. That is, k−th

eigenvalue of Ξ is equal to f (λk) =
1−2µλk+σ2λ2

k
(1−2µλk)2 . Further, it can be easily shown f (λ) is

increasing and convex in λ.

To wrap up the proof we make a use of the following Lemma.

Lemma 6. Let ζmin and ζmax be the smallest and largest eigenvalues of the square matrix M

(with n distinct eigenvalues). Then:

ζminx
T x ≤ xTMx ≤ ζmaxxT x,

where x ∈Rn.

Proof. Let v1,v2, · · · ,vn denote the eigenvectors corresponding to the eigenvalues ζ1,ζ2, · · · ,ζn
of M. Thus, there exists α1, · · · ,αn such that x =

∑n
i=1αivi . Using this fact, since

Mx =M
n∑
i=1

αivi =
n∑
i=1

αi Mvi =
n∑
i=1

αi ζivi ≤ ζmax
n∑
i=1

αivi = ζmaxx,

thus xTMx ≤ ζmaxxT x. And similarly the lower can be proved, completing the proof.

Finally, the proof of the proposition is immediate by employing Lemma 6 and the

fact that 1T 1 = n, i.e.,

0 <
na2

2
f (λmin) ≤Πbi.

G ≤
na2

2
f (λmax)

where f (λ) = 1−2µλ+σ2λ2

(1−2µλ)2 .

Proof of Proposition 15. The proof follows similar steps as in the proof of Proposition 4

and is omitted.

Proof of Corollary 2. Given Proposition 5, the proof is immediate because

Πbi.
G =

a2

2
1TK1 =

a2

2
1T

[
I−µ(G+GT )− σ2GTG

]−1
1

thus ∂Πbi.
G

∂σ2 = a2

2b 1TK GTG K1 > 0. The proof for the imperfect information case is similar.
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To gain intution, in the following we consider a discrete distribution and change

σ2 while the mean is kept fixed and prove the corollary. Let us assume Prob{θi = θ} =

1−Prob{θi = θ̄} = v > ∆θ
θ̄

, for all i. Without loss of generality, let θ̄ = δ θ > 0, for some δ.

Further, since v > ∆θ
θ̄

, thus δ > 1
1−v . Since µ = E[θi] is fixed and given, thus θ = µ

1+(1−v)(δ−1) .

As a result,

σ2 = v(1− v)(θ̄ −θ)2 = v(1− v)µ2
(

δ − 1
1 + (1− v)(δ − 1)

)2

.

We note that since µ and v are fixed and given, thus σ2 is only controlled by δ. It also

observes that σ2 is increasing in δ, i.e. ∂σ2

∂δ > 0. Intuitively, increasing δ, increases ∆θ =

θ̄ −θ, while µ and v are both kept fixed, increasing σ2. Thus, given Proposition 5, ∂Π
bi.
G

∂δ =
∂
∂σ2 [a

2

2 1TK1]∂σ
2

∂δ = [a
2

2 1T ∂K
∂σ2 1]∂σ

2

∂δ = [ a
2

2b 1TK GTG K1]∂σ
2

∂δ > 0.

Proof of Proposition 7. Recall that b = 1 and we are in the full information case. For ease

of exposition define S−1 , (I − µ(G + GT ))−1. Following the same steps as in the proof of

Proposition 5, one can show

Πbi.
G =

a2

2
1TK1 =

a2

2
1T

[
I−µ(G+GT )− σ2GTG

]−1
1.

Since σ2 is chosen to be small, thus Taylor expansion of Πbi.
G around σ2 = 0 implies

Πbi.
G =

a2

2
1T

[
S−1 + σ2 S−1 GTG S−1

]
1.

Since G is balanced (see Def. 4), thus S−11 = 1
1−µτ1 = ζ1 (note that τ is small enough so that

all the matrix-invertibilities are preserved). Therefore, 1T S−11 = ζn and 1T S−1GTGS−11 =

ζ21TGTG1 =
∑
i

(∑
j gij

)2
, completing the proof.

The same argument holds for the second-best contract, with the change that lin-

earization (Taylor expansion) of Πbi.,SB
G is around σ2

ψ = 0.

Proof of Lemma 2. Recall that b = 1 and we are in the first-best contract. The same proof

works for the second-best contract as well, note that there only θ changes to ψ(θ) and

Taylor expansion will be around σ2
ψ.
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Following the same steps as in the proof of Proposition 5, one can show

Πbi.
G =

a2

2
1TK1 =

a2

2
1T

[
I−µ(G+GT )− σ2GTG

]−1
1.

Since σ2 is chosen to be small, thus Taylor expansion of Πbi.
G around σ2 = 0 gives

Πbi.
G =

a2

2
1T

[
S−1 + σ2 S−1 GTG S−1

]
1.

By little algebra, it can be easily shown that

GTG =
∑
i

R2
i −diag

 n∑
j=1

g2
1j ,

n∑
j=1

g2
2j , · · · ,

n∑
j=1

g2
nj


that implies:

Πbi.
G =

a2

2
1T

S−1 + σ2 S−1

∑
i

R2
i −diag

 n∑
j=1

g2
1j ,

n∑
j=1

g2
2j , · · · ,

n∑
j=1

g2
nj


 S−1

1. (66)

Next, we proceed with computing Πmulti.
G . As shown in Proposition 1, the optimal

(first-best) trade profile is xFB(θ) = a [bI− (MθG+GTMθ)]−11. Thus, for each type profile θ

the (ex post) firm’s profit is given by (let xi denote agent i’s allocation with respect to the

type profile θ)

∑
i

axi − b2x2
i + xiθi

∑
j

gijxj

 = a1T x− b
2

xT x + (Mθx)TGx

= a1T x− b
2

xT x +
1
2

xT (MθG+GTMθ)x

= a1T x− 1
2

[
xT [bI− (MθG+GTMθ)] x

]
=
a2

2
1T [bI− (MθG+GTMθ)]−11,

where the last equality follows by substituting the optimal allocation trade in it. There-
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fore, (setting b = 1) the (ex-ante) firm’s profit (using multilateral) contract becomes:

Πmulti.
G =

a2

2
1T E

[
I− (MθG+GTMθ)

]−1
1. (67)

To simplify E
[
I− (MθG+GTMθ)

]−1
, we first write the Taylor expansion of

Λ ,
[
I− (MθG+GTMθ)

]−1
around θ = µ1. Thus we have:

[
I− (MθG+GTMθ)

]−1
=

[
I−µ(G+GT )

]−1
+
∑
i

(θi −µ)
(
∂Λ
∂θi
|θ=µ1

)
+

1
2!

∑
i

∑
j

(θi −µ)(θj −µ)
(
∂2Λ

∂θi∂θj
|θ=µ1

)

+
∞∑
n=3

1
n!

∑
ζ1,ζ2,··· ,ζn≥0
ζ1+···+ζn=n

 n∏
k=1

(θk −µ)ζk

 ∂nΛ

∂θζ1
1 ∂θ

ζ2
2 · · ·∂θ

ζn
n

|θ=µ1

 . (68)

Next, since E(θi −µ) = 0, for all i, we have

E
[[
I− (MθG+GTMθ)

]−1
]

=
[
I−µ(G+GT )

]−1
+

1
2!

∑
i

E[(θi −µ)2]
(
∂2Λ

∂θi∂θj
|θ=µ1

)
+ T>2, (69)

where

T>2 =
∞∑
n=3

1
n!

∑
ζ1,ζ2,··· ,ζn
ζ1+···+ζn=n
ζi,1,∀i

n∏
k=1

E[(θk −µ)ζk ]

 ∂nΛ

∂θζ1
1 ∂θ

ζ2
2 · · ·∂θ

ζn
n

|θ=µ1

 .

Notice that in T>2,ζi , 1 (for all i), since E(θi−µ) = 0. Moreover, by the Assumption, since

there exists m̂ > 0, such that E[(θi −µ)k] < (m̂σ )k, for all i and k ≥ 3, thus for all n ≥ 3,

n∏
k=1

E[(θk −µ)ζk ] < (m̂σ )
∑
k ζk = (m̂σ )n.

In addition, σ2 is chosen to be small, implying m̂σ is small (since m̂ is constant). Conse-
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quently,

T>2 <
∞∑
n=3

1
n!

∑
ζ1,ζ2,··· ,ζn
ζ1+···+ζn=n
ζi,1,∀i

(m̂σ )n
 ∂nΛ

∂θζ1
1 ∂θ

ζ2
2 · · ·∂θ

ζn
n

|θ=µ1

 .

Above inequality along with the Taylor expansion in (68) and the fact that m̂ is constant

imply that

T>2 =O(σ3).

Therefore, since σ2 is chosen to be small, T>2 is negligible and thus (69) becomes

E
[[
I− (MθG+GTMθ)

]−1
]

=
[
I−µ(G+GT )

]−1
+
σ2

2!

∑
i

(
∂2Λ

∂θ2
i

|θ=µ1

)
(70)

Moreover, for all i:
∂2Λ

∂θ2
i

|θ=µ1 = 2S−1
(
Ri S

−1 Ri
)
S−1.

Thus, (70) is simplified as

E
[[
I− (MθG+GTMθ)

]−1
]

=
[
I−µ(G+GT )

]−1
+ σ2 S−1

∑
i

Ri S
−1 Ri

S−1.

Plugging the above equality in (67) finally implies that

Πmulti.
G =

a2

2
1T E

[
I− (MθG+GTMθ)

]−1
1

=
a2

2
1T

S−1 + σ2 S−1

∑
i

Ri S
−1 Ri

S−1

1, (71)

recall that S−1 =
[
I−µ(G+GT )

]−1
.
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The proof is complete by comparing (66) and (71), that is

Πmulti.
G −Πbi.

G =
a2

2
σ2


KT n∑

i=1

Ri(S
−1 − I)Ri K

+
n∑
i=1

k2
i ‖ degin(i) ‖22


=

(
a2

2
σ2

)
KT

 n∑
i=1

Ri(S
−1 − I)Ri + diag[(G ◦G)1]

K
since

K = S−11 = [k1 k2 · · · kn]

and

n∑
i=1

k2
i ‖ degin(i) ‖22 = 1T S−1diag

 n∑
j=1

g2
1j ,

n∑
j=1

g2
2j , · · · ,

n∑
j=1

g2
nj

S−11

= KTdiag[(G ◦G)1]K.

Proof of Proposition 8. We prove each part separately as follows.

Part (i) The proof of the first part is immediate by (16). Note that ki , for all i, increases

by adding gij , assuming all the invertibility assumptions are preserved.

Part (ii) Let 0 < α < 1. Thus, the wight reduction is captured by αG, introducing a new

network denoted by G̃ = αG. Using Lemma 2, since G̃T G̃ = α2GTG and R̃i = αRi , for all i,

thus we have:

Πmulti.
G̃

−Πbi.
G̃

∣∣∣∣∣
G̃=αG

=
(
a2

2
σ2

)
α2 1T S̃−1

 n∑
i=1

Ri S̃
−1Ri −GTG

 S̃−11

≤
(
a2

2
σ2

)
α2 1T S−1

 n∑
i=1

Ri S
−1Ri −GTG

S−11

= α2
(
Πmulti.

G −Πbi.
G

)
,

where the inequality follows because S̃−1 = (I − µ(αG + αGT ))−1 is increasing in α, thus

S̃−1 ≤ S−1 (component-wise), completing the proof.

Part (iii) Since G is symmetric (i.e. G = GT ) it has n distinct eigenvalues and is thus
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diagonalizable. Therefore, there exists an invertible matrix V so that V −1GV = Λ, where

Λ is a diagonal matrix with the eigenvalues of G on its diagonal, and columns of V are

the eigenvectors of G. Therefore, G = VΛV −1. In addition, the eigenvectors can be chosen

to form an orthonormal basis of R
n, meaning that V is set to be orthonormal. That is

V TV = VV T = V −1V = I. Moreover,

S−1 =
∞∑
i=0

(2µ G)i =
∞∑
i=0

(
2µ VΛV −1

)i
= V

 ∞∑
i=0

(2µ Λ)i
V −1 = VΛ1V

−1, (72)

whereΛ1 is a diagonal matrix where its k−th element is 1
1−2µλk

, (note that 2µλk ≤ 2µλmax <

1, for all k).

By following similar argument as in (72), one can also show:

S−1 GTG S−1 = VΛ2
1Λ

2V −1

S−1

 n∑
i=1

Ri

 S−1

 n∑
i=1

Ri

S−1 = VΛ3
1(2Λ)2V −1. (73)

Note that
∑n
i=1Ri = G+GT = 2G, (since G = GT ).

Thus, (73) yields:

Ξ , S−1 (2G) S−1 (2G)S−1 − S−1 GTG S−1 = V

Λ3
1(2Λ)2 − (Λ1Λ)2︸                 ︷︷                 ︸

diagonal

V −1. (74)

The above equality characterizes eigenvalues of Ξ in terms of λ1,λ2, · · · ,λn. That is,

k−th eigenvalue of Ξ is equal to f (λk) = λ2
k

3+2µλk
(1−2µλk)3 . Further, it can be easily shown f (λ)

is increasing and convex in λ.
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Next, using Lemma 2, we have

Πmulti.
G −Πbi.

G =
(
a2

2
σ2

)
1T S−1

 n∑
i=1

Ri S
−1Ri −GTG

S−11

≤
(
a2

2
σ2

)
1T S−1


 n∑
i=1

Ri

 S−1

 n∑
i=1

Ri

 −GTG
S−11

=
(
a2

2
σ2

)
1TΞ1.

Finally, the proof of the proposition is immediate by employing Lemma 6 and the

fact that 1T 1 = n.

Part (iv) To prove this part, we only use the second term in (16). Let di denote agent i’s

in degree in G (thus, by assumption,
∑
j gij = gdi). Suppose agent imax has the maximum

in degree in G. Thus: (i) by definition, kimax > 1 + µ(dimaxg). (ii) ‖ degin(imax) ‖22= g2dimax .

Hence, (i) together with (ii) give:

Πmulti.
G −Πbi.

G ≥
(
a2

2
σ2

) n∑
i=1

k2
i ‖ degin(i) ‖22 ≥

(
a2

2
σ2

)
(µ dimaxg)2g2dimax =O(d3

imax
g4),

completing the proof.

Proof of Proposition 12. Using Lemma 2, we have

Πmulti.
G −Πbi.

G =
a2

2
σ2


KT

n∑
i=1

Ri(S
−1 − I)Ri K︸                      ︷︷                      ︸

,T1

+
n∑
i=1

k2
i ‖ degin(i) ‖22︸                 ︷︷                 ︸
,T2


. (75)

We analyze T1 and T2, separately, as follows. Let G denote the adjacency matrix of a star

network with n nodes, where agent 1 located at the center of it and the rest are at the

periphery.

Given the definitions of Ri , for all i (that is, Ri , EiG+GTEi , where Ei is the matrix

with only ith diagonal set as 1 and other entries as zero) for any non-negative matrix A
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we clearly have:
n∑
i=1

Ri A Ri ≤

 n∑
i=1

Ri

 A
 n∑
i=1

Ri

 ,
where here (≤) is for component-wise comparison. Since S−1 is invertible and well de-

fined, thus S−1 − I is component-wise non-negative. Thus, using the above inequality we

have:

n∑
i=1

Ri (S−1 − I) Ri ≤

 n∑
i=1

Ri

 (S−1 − I)

 n∑
i=1

Ri

 . (76)

Focusing on directed star networks (with no parallel links) where node 1 is located at the

center, the right-hand-side of the above inequality is achievable for star-inward networks

in which

n∑
i=1

Ri = R1 , κ


0 1 · · · 1

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0


.

Recall that we have assumed gij ∈ {0,κ} for all i, j, where κ > 0.

Moreover, since by definition K , S−11 = [k1 k2 · · · kn]T is the same for all of these

star networks, thus, using (76), we also have

KT
 n∑
i=1

Ri (S−1 − I) Ri

 K ≤ KT
 n∑
i=1

Ri

 (S−1 − I)

 n∑
i=1

Ri

K, (77)

that means the right-hand-side is achievable with the star-inward network. Thus, in (75),

maximum of T1 is obtained star-inward networks.

We next complete the proof by considering T2 in (75). Again, note that in all of these

star networks K = S−11 = [k1 k2 · · · kn]T is the same, (k1 > k2 = k3 = · · · = kn). But in star

inward network

T2 = κ2(n− 1)k2
1 . (78)

We claim T2 is maximum in the case of a star-inward network. To prove this, consider

another star network in which agent 1 obtains externality from n1 neighbors, and n2
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periphery nodes obtain externality from agent 1, thus n1 +n2 = n−1. In this star network

T2 = κ2n1k
2
1 +κ2n2k

2
2 = κ2(n1k

2
1 +n2k

2
2), that is lower than (78), because k1 > k2.

Proof of Proposition 13. To prove the proposition, we first show that if αn = 1√
(n−1)(µ2+σ2+ε)

,

where ε is positive and constant, then
(
I−µ

(
G(n) +G(n)T

)
+ σ2G(n)TG(n)

)−1
is well-defined

and non-negative. For ease of illustration denote G(n) , µ
(
G(n) +G(n)T

)
− σ2G(n)TG(n).

To prove the invertibility, it is enough to show that ρ (G(n)) < 1, i.e., the maximum eigen-

value of G(n), in absolute value, is less than 1. Note that G(n) is symmetric, thus all of its

eigenvalues are real. In the sequel, fix n. It is clear that:

G(n) +G(n)T = αn


0 1 · · · 1

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0


,

and

G(n)TG(n) = α2
n


0 0 · · · 0

0 1 · · · 1
...

...
. . .

...

0 1 · · · 1


.

Let λ be an eigenvalue of G(n). By definition, G(n)x = λx does have a solution in x. Due

to the symmetry, x has the following form, xT = [a b b · · · b]. Thus, due to the definition

of G(n) and the above two (matrix-from) equalities, G(n)x = λx yields

λa = αnµ(n− 1)b,

λb = αnµa+ σ2α2
n(n− 1)b.

Thus, by a little algebra, we have

λ2 −α2
nσ

2(n− 1)︸        ︷︷        ︸
, B

λ−α2
nµ

2(n− 1)︸       ︷︷       ︸
, C

= 0. (79)

that is, λ2 −Bλ−C = 0. Now, note that 0 < C < B and B+C < 1, where the later is ensured
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by αn = 1√
(n−1)(µ2+σ2+ε)

, where ε > 0 and is constant. Therefore, the roots of (79) are (in

absolute value) less than 1, that is desired. This also implies
(
I−µ

(
G(n) +G(n)T

))−1
is

well-defined and non-negative. Next, we continue to complete the proof. By definition,

we have:

k1(n) =
[(
I−µ

(
G(n) +G(n)T

))−1
1
]

1
>
[(
I+µ

(
G(n) +G(n)T

))
1
]
1

= 1 +µαn(n− 1).

From the above inequality we obtain:

k1(n) =O
(√
n
)
.

Finally, using Lemma 2, for all n, we have:

Πmulti.
G(n) −Π

bi.
G(n) >

a2

2
σ2

 n∑
i=1

k2
i ‖ degin(i) ‖22


=
a2

2
σ2 k2

1(n) α2
n (n− 1)

=
a2

2

(
σ2

µ2 + σ2 + ε

)
k2

1(n).

The last equality implies that as n grows, Πmulti.
G(n) −Π

bi.
G(n) tends to infinity, as k1(n) goes to

infinity.

Proof of Proposition 14. Using Proposition 12, proving this result is equivalent to show

the following.

Equivalent Proposition: Consider the sequence of Star-inward networks {G(n)}∞n=2, where

βn , g12 = g13 = · · · = g1n = 1
(n−1)
√
µ2+σ2+ε

, where ε > 0 is a constant, and the rest of entries

are zero. Then we have:

Πmulti.
G(n) −Π

bi.
G(n) −→ 0.

We first note since βn = 1
(n−1)
√
µ2+σ2+ε

, as shown in Proposition 13,
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(
I−µ

(
G(n) +G(n)T

)
− σ2G(n)TG(n)

)−1
is well-defined and non-negative, for all n.

Now, fix n > 1, and denote

R1 , βn


0 1 · · · 1

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0


= G+GT ,

thus, for any t > 0,

R2t+1
1 = β2t+1

n


0 (n− 1)t · · · (n− 1)t

(n− 1)t 0 · · · 0
...

...
. . .

...

(n− 1)t 0 · · · 0


, (80)

and

R2t
1 = β2t

n


(n− 1)t 0 · · · 0

0 (n− 1)t−1 · · · (n− 1)t−1

...
...

. . .
...

0 (n− 1)t−1 · · · (n− 1)t−1


. (81)

We first compute Bonacich centrality measures of agents in G+GT . By definition, Bonacich

centrality vector is given by: [k1 k2 · · · k2]T =
(
I−µ(G+GT )

)−1
1. Due to the symmetry

and the invertibility,
(
I−µ(G+GT )

)−1
=

∑
t≥0

(
µ(G+GT )

)t
=

∑
t≥0 (µR1)t. Thus, by simple

algebra, it follows that

k1 = 1 + βnµ(n− 1) +
∞∑
t=2

(βnµ)t (n− 1)d
t
2 e =O(1) = constant, (82)

k2 = 1 + βnµ+
∞∑
t=2

(βnµ)t (n− 1)b
t
2 c =O(1) = constant, (83)

where the last equality in the above two equalities are followed since n is large and βn =
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1
(n−1)
√
µ2+σ2+ε

. Now, using Proposition 2, we have

Πmulti.
G −Πbi.

G =
a2

2
σ2
δ


KT

n∑
i=1

Ri(S
−1 − I)Ri K︸                      ︷︷                      ︸

,T1

+
n∑
i=1

k2
i ‖ degin(i) ‖22︸                 ︷︷                 ︸
,T2


, (84)

thus, in this set up, T2 = k2
1β

2
n(n−1)→ 0. This is because βn = 1

(n−1)
√
µ2+σ2+ε

and k1 =O(1).

In the sequel of the proof, according to (84), we focus on T1. According to the definitions

of Ri (see proof of Proposition 2), we have:

T1 = KT
n∑
i=1

Ri(S
−1 − I)Ri K,

= KTR1(S−1 − I)R1 K,

= KTR1

 ∞∑
t=1

(µR1)t
R1 K,

= KT
 ∞∑
t=1

µt Rt+2
1

 K
= KT

 ∞∑
t=1

µ2t−1 R2t+1
1

 K︸                      ︷︷                      ︸
,Todd

+KT
 ∞∑
t=2

µ2t−2 R2t
1

 K︸                    ︷︷                    ︸
,Teven

. (85)

Recall that KT = [k1 k2 · · · k2]. Further, using (80) and (81), for any t, we have:

KTR2t+1
1 K = β2t+1

n (2k1k2(n− 1)t+1),

KTR2t
1 K = β2t

n (k2
1 + (n− 1)k2

2) (n− 1)t.
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Plugging the above equalities into (85), and approaching n to infinity, we obtain:

Todd = 2k1k2

∞∑
t=1

µ2t−1(n− 1)t+1β2t+1
n → 0,

Teven = (k2
1 + (n− 1)k2

2)
∞∑
t=2

µ2t−2(n− 1)tβ2t
n → 0,

That is because O(k1) = O(k2) = 1 and βn = O
(

1
n

)
. Thus T1→ 0, that completes the proof.

Proof of Proposition 9. To prove the result we show Πmulti.
G(n) = Πbi.

G(n) = O(n). Using (77)

we have:

1T S−1
∑
i

RiS
−1RiS

−11 = ζ21T
∑
i

RiS
−1Ri

1

≤ ζ21T
∑
i

Ri

S−1

∑
i

Ri

1

= ζ21T
(
G+GT

)
S−1

(
G+GT

)
1

= ζ2τ21T S−11

= ζ3τ2n

=O(n).

Thus, the above inequality along with (71) imply that

Πbi.
G(n) ≤Π

multi.
G(n) =

a2

2
1T

S−1 + σ2 S−1

∑
i

Ri S
−1 Ri

S−1

1

≤ a
2

2

[
ζn+ σ2ζ3τ2n

]
=O(n).

In addition, using Proposition 7, since the in degree at each node is the same, it clears

that Πbi.
G(n) =O(n). Therefore, limn→∞

Πmulti.
G(n)

Πbi.
G(n)

=O(1).

To complete the proof, we need to guaranty the invertibility of T =
(
I−µ(G+GT )− σ2GTG

)
.

Choosing small enough τ (independent of n) will ensure this, if we show GTG dose not
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blow up as n grows to infinity. Assuming G+GT is k-regular (k is finite), we obtain∑
j

[GTG]ij = number of walks of length 2 starting from i = k2,

which is independent of n. Meaning that by choosing small τ (independent of n) T can

be diagonally dominant and of course invertible.

The following result shows the above observation is also true in cycle (clock-wise)

networks that may not necessarily have a balanced structure.

Proposition 16. Consider the sequence of (clock-wise) ring/cycle networks {G(n)}∞n=2, where

weights are either zero or one. Let 2µ+ σ2 < 1 and µ < 1
4 . As n grows:

lim
n→∞

Πmulti.
G(n)

Πbi.
G(n)

=O(1).

Proof of Proposition 16. Fix n. We first note that since

G(n) =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


,

thus,

G(n)TG(n) = I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


.
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and

G(n) +G(n)T =



0 1 0 0 · · · 1

1 0 1 0 · · · 0

0 1 0 1 · · · 0
...

. . . . . . . . .

0 · · · 0 1 0 1

1 0 · · · 0 1 0


.

Therefore, when 2µ + σ2 < 1, then
(
I−µ

(
G(n) +G(n)T

)
− σ2G(n)TG(n)

)−1
is well-defined

and non-negative64. Furthermore, Bonacich centrality measures of agents in G(n) +G(n)T

(by definition) is given by: [k1 k2 · · · k2]T = S(n)−11 =
(
I−µ(G(n) +G(n)T )

)−1
1. Due to

the symmetry and the invertibility we have k1 = · · · = kn = k, and since µ < 1
4 , by simple

algebra, we have 1 ≤ k < 2. That is, k =O(1).

As shown in Proposition 2

Πbi.
G(n) =

a2

2
1T

S−1 + σ2 S(n)−1 G(n)TG(n)︸      ︷︷      ︸
=I

S(n)−1

1 =
a2

2

[
1T S−11T + σ2 1T S(n)−1 S(n)−11

]

=
a2

2

[
kn+ σ2k2n

]
=O(n). (86)

Next, we show Πmulti.
G(n) =O(n).

As shown in Lemma 2 (see Eq. (71)) we have:

Πmulti.
G(n) =

a2

2
1T E

[
I− (MδG(n) +G(n)TMδ)

]−1
1

=
a2

2


1T S(n)−11︸      ︷︷      ︸

T1

+σ2 1T S(n)−1

∑
i

Ri S(n)−1 Ri

S(n)−11︸                                             ︷︷                                             ︸
T2


,

First we note that, by definition, T1 = kn = O(n). Next we show T2 = O(n). Notice that

64This is because I−µ
(
G(n) +G(n)T

)
− σ2G(n)TG(n) becomes diagonally dominant (when 2µ+ σ2 < 1).
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S(n)−11 = k1 and 1T S(n)−1 = k1T . Thus,

T2 = σ2k2 1T
∑
i

Ri S(n)−1 Ri

1.

Therefore,

T2 ≤ σ2k2 1T

∑
i

Ri

S(n)−1

∑
i

Ri


1 = 2σ2k2 1T S(n)−11 = 2σ2k3n. (87)

Also since S(n)−1 ≥ I, thus

T2 ≥ σ2k2 1T
∑
i

Ri Ri

1 ≥ σ2k2 1T 1 = σ2k2n.

Eq. (87) along with (88) imply that T2 = O(n). Thus, Πmulti.
G(n) = O(n). This along with (86)

complete the proof.

Proof of Proposition 10. Without loss of generality, for the ratio analysis, one can set
a2

2 = 1. Thus:

Πmulti.
G = 1TK + σ2 KT

∑
i

Ri S
−1 Ri

K
≤ 1TK + σ2 KT

∑
i

Ri

 S−1

∑
i

Ri

K
= 1TK + σ2 KT

(
G+GT

)
S−1

(
G+GT

)
K

= 1TK + σ2 1T
(
G+GT

)2
S−31.

Let λmax be the maximum eigenvalue of G+GT . Note that invertibility ensures µλmax < 1.

Since G+GT is symmetric, it is diagonalizable. There exists orthonormal matrices P and

P T such that P P −1 = P P = P P T = I, and P (G + GT )P T = diag(λ1, · · · ,λn), where λi are

eigenvalues of G+GT .
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Using the digitalization of G+GT yields

(G+GT )2S−3 = P Tdiag(f (λ1), · · · , f (λn))P

where f (λ) , λ2

(1−µλ)3 , which is increasing and convex in λ.

Since f (λ) is increasing in λ, thus the maximum eigenvalue of (G+GT )2S−3 becomes

f (λmax). This implies that 1T
(
G+GT

)2
S−31 ≤ nf (λmax). Therefore, we obtain:

Πmulti.
G ≤ ||K ||1 + σ2 n f (λmax). (88)

To wrap up the proof, recall that

Πbi.
G = ||K ||1 + σ2KTGTGK ≥ ||K ||1. (89)

Since ||K ||1 ≥ n, the proof is complete.

Proof of Proposition 11. Again, without loss of generality, for the ratio analysis, one can

assume a2

2 = 1. Thus:

Πmulti.
G = 1TK + σ2 KT

∑
i

Ri S
−1 Ri

K
≥ 1TK + σ2 KT

∑
i

R2
i

K
= 1TK + σ2 KT

(
GTG+ M̃

)
K,

where M̃ = diag(||d1||22, ||d2||22, · · · , ||dn||
2
2). Therefore,

Πmulti.
G

Πbi.
G

≥
1TK + σ2 KT

(
GTG+ M̃

)
K

1TK + σ2 KTGTGK

= 1 +
σ2 KT M̃K

1TK + σ2 KTGTGK

≥ 1 +
σ2||diag(K)G||2F
||K ||1 + ||K ||22

where the last inequality follows by noting that the maximum eigenvalue of σ2GTG is less
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than 1, and therefore σ2KTGTGK ≤ KTK = ||K ||22.

F Appendix: Different centrality orders inG+GT and G +GT

For ease of notation we first have the following definition.

Definition 6 (Modified Network: G). Given the adjacency matrix G and the mean and vari-

ance of the (virtual) types, respectively µψ and σ2
ψ, the modified network G is defined as

G , µψG+
σ2
ψ

2b
GTG. (90)

The modified network for the first-best allocation is similarly defined via using µ and σ2 instead

of µψ and σ2
ψ, respectively.

A quick comparison between Propositions 1 and 3 shows that multilateral and bi-

lateral contracts may not necessarily induce the same order of allocations. To see this, Let

b = 1 and θi = θ̄, for all i. Then, Proposition 1 implies xSBmultilateral = a[I − θ̄(G + GT )]−11,

that is proportional to the Bonacich centrality measure in G+GT . However, Proposition 3

implies xSBbilateral = a(∆θ G+ I)[I−(G+GT )]−11, where G , µψG+
σ2
ψ

2bG
TG. That is proportional

to the Bonacich centrality measure in G +G.

In this section we provide a condition under which centrality orders in the modified

and the original networks are always diffident.

In general, the form of the modified network (see Def. 6) suggests that when GTG is

sufficiently different from G, even with a small amount of uncertainty (i.e. σ2), a change

on the central agents in G+GT in compare to G +GT may happen. In other words, in

networks with high second order of connectivity, captured by GTG, a small amount of

uncertainty may make a change on the centrality orders of agents in the original network.

Following the above intuition, in the next proposition, we present a sufficient con-

dition under which centrality orders in G+GT and G +GT are different. For ease of expo-

sition, let us define doutG (i) denoting the out-degree of agent i in G, i.e., doutG (i) = |{k : gki >

0, k = 1,2, · · · ,n}|.

Proposition 17. Let agent i and j be both central in G+GT . If doutG (i) > doutG (j) = 0, then

Bonacich centrality of agent i is strictly higher than agent j in G +GT .
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Proof of Proposition 17. By definition, we have

1
b

(GTG)rs =
1
b

n∑
k=1

g̃rk gks =
1
b

n∑
k=1

gkr gks, (91)

From (91) we obtain for any r, s:

(GTG)rr =
1
2

n∑
k=1

g2
kr > 0, if doutG (r) > 0.

(GTG)rs = (GTG)sr = 0, if doutG (r)× doutG (s) = 0.

(GTG)rs = (GTG)sr > 0, if ∃ k s.t. gkr > 0 and gks > 0. (92)

Bonacich centrality measure of an agent in a given network counts the total number of

(suitably weighted) walks of different length starting from the agent in the network. Next,

consider agent i and j such that doutG (i) > doutG (j) = 0. In GTG: since doutG (j) = 0, thus there

is no walk starting from agent j, whereas, because doutG (i) > 0, there exits walks (at least

self-loops) starting from agent i.

Therefore, because: (i) doutG (i) > doutG (j) = 0, (ii) agent i and j are both equivalently

central in G+GT , and (iii) G +GT = µ(G+GT ) + σ2

b G
TG, it follows that Bonacich centrality

of agent i is strictly higher than agent j in G +GT .

The above proposition intuitively states that having a difference in the out-degrees

of two central agents in G+GT , might be crucial to make a change in their centralities

with respect to the modified network. This proposition is substantiated by the following

example.

Example 4 (In-ward-out-ward stars). Consider the following network G with 2d+2 agents65

wherein doutG (1) = d + 1, doutG (i) = 1, d + 3 ≤ i ≤ 2d + 2, and doutG (2) = doutG (j) = 0, 3 ≤ j ≤ d + 2,

as it is depicted in Fig. 9. In the modified network (depicted in Fig. 9) the impact of GTG is

drawn by red lines. Since doutG (1) = d + 1 and doutG (i) = 1, d + 3 ≤ i ≤ 2d + 2, thus due to GTG

node 1 and node i, d + 3 ≤ i ≤ 2d + 2, have, respectively, d + 1 and 1 self-loops. Moreover, node

1 and i, d + 3 ≤ i ≤ 2d + 2, both feed agent 2, thus agents 1 and i are connected in G due to

GTG. Now, applying Theorem 17, it follows that agents 1 and 2 are both, equivalently, central

65Suppose gij ∈ {0, k}, for any i, j, where k > 0 is sufficiently small enough such that Assumption 3 is
satisfied.
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in G+GT . However, agent 1 has higher centrality than agent 2 in G +GT .
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Figure 9: The top graph is G and the bottom is G.

G Appendix: Uncertainty in the direct utility

In section 3.2 we showed when uncertainty is in the network effect (i.e., incomplete infor-

mation in the strength of interactions), the maximum distortion in the whole network is

due to an agent that she and her neighbors together have high Bonacich centralities in the

symmetrized network G+GT , introducing the key agents. This is a novel feature for char-

acterizing key agents in networks. In this appendix we show that when uncertainty is in

the direct utility, then the structures of the first and second-best allocations will become

different than the main model where uncertainty is in the externality. Importantly, when

uncertainty is in the direct utility, then the nature of consumptions and the overall distor-

tion becomes directly related to Bonacich centrality in the symmetrized network, which is

closely related to the previous studies (e.g., most notably Ballester, Calvo-Armengol and
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Zenou (2006), Candogan, Bimpikis and Ozdaglar (2012) and Bloch and Quérou (2013)).

Uncertainty in the direct utility In this case, the (ex post) utility of each agent is given

by

ui(θi ,xi ,x−i , ti) = θixi −
b
2
x2
i︸      ︷︷      ︸

direct utility
(type dependent)

+ xi
∑
j,i

gijxj︸      ︷︷      ︸
indirect utility
(network effect)

− ti︸︷︷︸
payment

, (93)

where xi is the amount of the good she consumes, x−i , (x1,x2, · · · ,xi−1,xi+1, · · · ,xn) is the

consumption of other agents excluding agent i and ti is the disutility charged for xi by

the firm. In addition, θi > 0 measures the intrinsic marginal valuation for agent i. In the

sequel, we call θi agent i’s valuation factor, that is her type.

Assumption 4. For each i = 1,2, · · · ,n, b >
∑
j,i(gij + gji).

We next characterize the first-best and the second-best solutions.

Proposition 18. The first-best and the second-best allocations are as follows.

(i) Under Assumption 4, the first-best trade profile is given by:

xFB(θ) = (bI− (G+GT ))−1yθ, (94)

for any θ ∈ [θ θ̄]n, where yθ , diag(θ1,θ2, · · · ,θn)1.

(ii) Under Assumptions 4 and 2, the second-best trade profile is given by:

xSB(θ) = (bI− (G+GT ))−1yψ,θ, (95)

for any θ ∈ [θ θ̄]n, where yψ,θ , diag(ψ(θ1),ψ(θ2), · · · ,ψ(θn))1.

The proof of this result follows similar steps as in the proof of Proposition 1.

In contrast to Proposition 1, where uncertainty is in the externality, here θ and

ψ(θ) appear outside of the matrix component of the answers (compare (94), (95) with

Proposition 1). This is due to the location of uncertainty (i.e. which is in the direct utility

or the externality), and, thus, is critical for the following result.
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Given the definitions in 2 and 3, and the result in Proposition 18 we have the fol-

lowing result.

Proposition 19. For any type profile θ ∈ [θ θ̄]n:

(i) Distortion vector is given by:

d(θ) = (bI− (G+GT ))−1yφ,θ, (96)

where yφ,θ , diag(φ(θ1),φ(θ2), · · · ,φ(θn))1.

(ii) Distortion is downward, i.e., d(θ) ≥ 0.

(iii) Let [d(θ)]i denote the distortion on agent i’s trade with regard to θ. Then

[d(θ)]i > 0.

if there exists at least one agent j whose θj , θ̄.

(iv) Let θi ≤ θ̄ and θj = θ̄, for all j , i. Thus, φ(θj) = 0, for all j , i. Therefore,

Ti(θi , θ̄−i) = 1T d(θi , θ̄−i) = (1/b)
[
1T

(
I− 1
b

(G+GT )
)−1]

yφ,θ1,

= (1/b)[k1 k2 · · · kn][0 0 · · ·φ(θi) · · · 0]T

=
(
φ(θi)
b

)
ki ,

where ki is agent i’s Bonacich centrality according to (I− 1
b (G+GT ))−11.

The first three parts are intuitive. However, this last part of this result shows that

the maximum distortion is due to an agent who has the highest Bonacich centrality, i.e.,

ki , in G + GT which is closely related to the previously studies (e.g., Ballester, Calvo-

Armengol and Zenou (2006), Candogan, Bimpikis and Ozdaglar (2012) and Bloch and

Quérou (2013)). However, in section 3.2 we showed when uncertainty is in the externality,

the maximum distortion in the whole network is due to an agent that she and her neighbors

together have high Bonacich centralities in the symmetrized network G+GT , introducing

the key agents. This is a novel feature for characterizing key agents in networks which is
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due to the uncertainty in the externality (i.e., incomplete information in the strength of

interactions).

Proof of Proposition 19. The first part of the proposition directly follows from the defi-

nition 2 and Proposition 18. To prove the second and third part, define M ,
(
I− 1

b (G+GT )
)−1

.

Thus,

mij =
∞∑
k=0

1
bk

(gij + gji)
[k] (97)

where mij is the ij entry of M and (gij + gji)[k] is the ij enry of (Gave)k. In other words,

(gij + gji)[k] is the total number of weighted walks of length k between agents i and j

in Gave, (see e.g., Jackson (2008)). Next, assume agent j’s report is lower than the highest

type, i.e., θj < θ̄. Thus, φ(θj) =
1−F(θj )
f (θj )

> 0. Now, consider agent i, since Gave is a connected

network, thus agents i and j are connected through a path in Gave. Further, as we shown

in part (i), distortion vector is characterized as:

d(θ) = (1/b)
(
I− 1
b

(G+GT )
)−1

yφ,θ1,

= (1/b) M yφ,θ1,

where yφ,θ1 = (φ(θ1),φ(θ2), · · · ,φ(θn))T (a column vector). Since i and j are connected,

mij > 0 (due to (97)), moreover, φ(θj) > 0 (due to θj < θ̄), thus:

[d(θ)]i ≥mijφ(θj) > 0. (98)

The proof of the last part is immediate by the definition.

Finally, we wrap up this section with the following example.

Example 5 (Kite network). Consider the following symmetric network, gij = gji ∈ {0, .1}, i, j ∈
{1,2, · · · ,5}, that captures the interrelations among the agents. Let θi ∈ {θ, θ̄} with Prob{θ =

θ} = 1
2 (b is normalized to 1 and∆θ = 1). The following table characterizes the distortion vector

when only one agent is inefficient. As shown in the table, the distortion propagates throughout

the network proportional to Bonacich centrality. To be precise, if distortion is due to say agent

1, agent 1 exerts the highest inefficacy in its allocation, and this affects others proportional to

their Bonacich centrality as in (96) (notice that agent 2 is the central agent).
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The third column of the table implies that overall distortion is proportional to Bonacich

centrality of the agents in the network. Thus, distortion in agents 2’s trade (the central agent)

results in the highest overall distortion in the whole network66. Therefore, agent 2 is the key

agent.

321

4

5

2 3

4

5

221

Figure 10: Kite network. Interconnection among the agents.

Inefficient agent Distortion vector T (θi , θ̄−i)
1 (1.2 .38 .07 .31 .31) 2.27
2 (.38 1.25 .25 .32 .32) 2.52
3 (.07 .25 1.05 .06 .06) 1.49
4 (.31 .32 .06 1.12 .12) 1.93
5 (.31 .32 .06 .12 1.12) 1.93

Table 1: This table shows how distortion propagates throughout the network. Inefficiency
in agent 2’s trade (the central agent) creates the highest distortion in the whole network.

66Notice that φ(θ)
b = 1
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